6502
Assembly Language
“Subroutines |

Lance A. Leventhal
Winthrop Saville

OSBORNE/McGraw-Hill
Berkeley, California

Disclaimer of Warranties
and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs
in it, including research, development, and testing to ascertain their
effectiveness. The authors and the publishers make no expressed or
implied warranty of any kind with regard to these programs nor the sup-
plementary documentation in this book. In no event shall the authors or
the publishers be liable for incidental or consequential damages in con-
nection with or arising out of the furnishing, performance, or use of any
of these programs.

Apple 11 is a trademark of Apple Computer, Inc.

Published by

Osborne/ McGraw-Hill
2600 Tenth St.

Berkeley, California 94710
US.A.

For information on translations and book distributors outside of the U.S. A, please write OSBORNE/
McGraw-Hill at the above address.

6502 ASSEMBLY LANGUAGE SUBROUTINES

Copyright© 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be reproduced for publication.

34567890 DODO 876543
ISBN 0-931988-59-4

Cover art by Jean Frega.
Text design by Paul Butzler.

Contents

Preface v
1 General Programming Methods 1
2 Implementing Additional Instructions and Addressing Modes
3 Common Programming Errors 133
Introduction to Program Sectibn 157
4 Code Conversion 163
5 Array Manipulation and Indexing 194
O Arithmetic 230
7 Bit Manipulation and Shifts 306
8 String Manipulation 345
O Array Operations 382
10 Input/Output 418
11 Interrupts 464
A 6502 Instruction Set Summary 505

B Programming Reference for the 6522 Versatile
Interface Adapter (VIA) 510 ‘

C ASCII Character Set 517
Glossary 519
Index 543

73

Preface

This book is intended to serve as a source and a reference for the assembly
language programmer. It contains an overview of assembly language program-
ming for a particular microprocessor and a collection of useful routines. In writing
the routines, we have used a standard format, documentation package, and
parameter passing techniques. We have followed the rules of the original
manufacturer’s assembler and have described the purpose, procedure, param-
eters, results, execution time, and memory usage of each routine.

This overview of assembly language programming provides a summary for
those who do not have the time or need for a complete textbook such as is pro-
vided already in the Assembly Language Programming series. Chapter 1 contains
an introduction to assembly language programming for the particular processor
and a brief summary of the major features that differentiate this processor from
other microprocessors and minicomputers. Chapter 2 describes how to imple-
ment instructions and addressing modes that are not explicitly available. Chapter
3 discusses common errors that the programmer is likely to encounter.

The collection of routines emphasizes common tasks that occur in many
applications such as code conversion, array manipulation, arithmetic, bit
manipulation, shifting functions, string manipulation, summation, sorting, and
searching. We have also provided examples of 1/0 routines, interrupt service
routines, and initialization routines for common family chips such as parallel
interfaces, serial interfaces, and timers. You should be able to use these routines
as subroutines in actual applications and as guidelines for more complex pro-
grams. .

We have aimed this book at the person who wants to use assembly language
immediately, rather than just learn about it. The reader could be

- An engineer, technician, or programmer who must write assembly language
programs for use in a design project.

- A microcomputer user who wants to write an /O driver, a diagnostic pro-
gram, or a utility or systems program in assembly language.

A"/

Vi 66502 ASSEMBLY LANGUAGE SUBROUTINES

. A programmer or engineer with experience in assembly language who needs
a quick review of techniques for a particular microprocessor.
- A system designer or programmer who needs a specific routine or technique
for immediate use.
- A programmer who works in high- level languages but who must debug or
optlmlze programs at the assembly level or must link a program written in a high-
level language to one written in assembly language.

. A system designer or maintenance programmer who must quickly under-
stand how specific assembly language programs operate.

- A microcomputer owner who wants to understand how the operating system
works on a particular computer, or who wants to gain complete access to the com-
puter’s facilities.

- A student, hobbyist, or teacher who wants to see some examples of working
assembly language programs. 4 '

This book can also serve as supplementary material for students of the Assem-
bly Language Programming series.

This book should save the reader time and effort. There is no need to write,
debug, test, or optimize standard routines, nor should the reader have to search
through material with which he or she is thoroughly familiar. The reader should

- be able to obtain the specific information, routine, or technique that he or she
needs with a minimum amount of effort. We have organized and indexed this
book for rapid use and reference.

Obviously, a book with such an aim demands response from its readers. We
have, of course, tested all the programs thoroughly and documented them
carefully. If you find any errors, please inform the publisher. If you have sugges-
tions for additional topics, routines, programming hints, index entries, and so
forth, please tell us about them. We have drawn on our programming experience
to develop this book, but we need your help to improve it. We would greatly
appreciate your comments, criticisms, and suggestions.

NOMENCLATURE

We have used the following nomenclature in this book to describe the
architecture of the 6502 processor, to specify operands, and to represent general
values of numbers and addresses.

6502 Architecture

Byte-length registers include
A (accumulator)

PREFACE Vil

F (flags, same as P)

P (status register)

S or SP (stack pointer)

X (index register X)

Y (index register Y)
Of these, the general purpose user registers are A, X, and Y. The stack pointer
always contains the address of the next available stack location on page 1 of
memory (addresses 0100,, through 01FF,). The P (status) or F (flag) register
consists of a set of bits with independent functions and meanings, organized as
shown in the following diagram:

7 6 5 4 3 2 1 (0 -——BijtNumber
W] \% [X I B I D |‘l l Z l C | Processor Status Regisl.er P
S 4

Carry

Zero

L—————lmerrupt disable

Decimal mode

Break command
Not used (Logic 1)
Overflow

Negative (Sign)

Word-length registers include
PC (program counter)

Note: Pairs of memory locations on page 0 may also be used as word-length
registers to hold indirect addresses. The lower address holds the less significant
byte and the higher address holds the more significant byte. Since the 6502 pro-
vides automatic wraparound, addresses 00FF , and 0000, form a rarely used pair.
Flags include

Break (B)

Carry (C)

Decimal Mode (D)

Interrupt Disable (I)

Negative or Sign (N)

Overflow (V)

Zero (Z)

These flags are arranged in the P or F register as shown previously.

Vill 6502 ASSEMBLY LANGUAGE SUBROUTINES

6502 Assembler

Delimiters include
space After a label or an operation code

Between operands in the operand
(address) field

Before a comment

9

: After a label (optional)
() Around an indirect address

Pseudo-Operations include

.BLOCK Reserve bytes of memory; reserve the specified number of bytes of
memory for temporary storage

.BYTE Form byte-length data; place the specified 8-bit data in the next
available memory locations

DBYTE Form double-byte (word) length data with more significant byte
first; place the specified 16-bit data in the next available memory
locations with more significant byte first

.END End of program
.EQU Equate; define the attached label

.TEXT Form string of ASCII characters; place the specified ASCII charac-
ters in the next available memory locations

'WORD Form double-byte (word) length data with less significant byte first;
place the specified 16-bit data in the next available memory loca-
tions with less signiﬁc_anl byte first

* = Set origin; assign the object code generated from the subsequent as-
sembly language statements to memory addresses starting with the
one specified '

= Equate; define the attached label

Designations include
Number systems:
$ (prefix) or H (suffix) Hexadecimal
@ (prefix) or Q (suffix) Octal
% (prefix) or B (suffix) Binary
The default mode is decimal.
Others:

* (in front of character) ASCII

* Current value of location
(program) counter

L)

+#
WX

WY

PREFACE

or * * (around
a string of characters) -

ASCII string
Immediate addressing

Indexed addressing with index
register X

Indexed addressing with index
register Y

The default addressing mode is absolute (direct) addressing.

General Nomenclature

ADDR
ADDRH
ADDRL
BASE
BASEH
BASEL
DEST

NTIMES
NTIMH
NTIMHC
NTIML
NTIMLC
OPER
OPER1
OPER2
PGZRO
PGZRO+1

POINTER
POINTH
POINTL
RESLT

a 16-bit address in data memory
the more significant byte of ADDR

 the less significant byte of ADDR

a constant 16-bit address
the more significant byte of BASE
the less signficant byte of BASE

a 16-bit address in program memory, the destmatlon for
a jump or branch instruction

an §8-bit data item
an 8-bit data item
an 8-bit data item
an 8-bit data item
an 8-bit data item !
a 16-bit address in data memory
a 16-bit address in data memory
a 16-bit address in data memory
an address on page 0 of data memory

the address one larger than PGZRO (with no carry to
the more significant byte)

a 16-bit address in data memory
the more significant byte of POINTER
the less significant byte of POINTER

a 16-bit address in data memory

IX

X 6502 ASSEMBLY LANGUAGE SUBROUTINES

VALI16 a 16-bit data item

VALI6L the less significant byte of VAL16
VAL16M the more significant byte of VAL16
VALUE an 8-bit data item

ZCOUNT a 16-bit address in data memory

Chapter 1 General Programming
Methods

This chapter describes general methods for writing assembly language pro-
grams for the 6502 and related microprocessors. It presents techniques for per-
forming the following operations:

- Loading and saving registers

+ Storing data in memory

- Arithmetic and logical functions

+ Bit manipulation

+ Bit testing

+ Testing for specific values

+ Numerical comparisons

- Looping (repeating sequences of operations)

- Array processing and manipulation

- Table lookup

+ Character code manipulation

- Code conversion

+ Multiple-precision arithmetic

+ Multiplication and division

- List processing

. Proceséing of data structures.
Special sections discuss passing parameters to subroutines, writing 1/0 drivers
and interrupt service routines, and making programs run faster or use less
memory.

The operations described are required in applications such as instrumentation,
test equipment, computer peripherals, communications equipment, industrial
control, process control, aerospace and military systems, business equipment,

1

2 6502 ASSEMBLY LANGUAGE SUBROUTINES

and consumer products. Microcomputer users will make use of these operations
in writing 1/0 drivers, utility programs, diagnostics, and systems software, and in
understanding, debugging, or improving programs written in high-level
languages. This chapter provides a brief guide to 6502 assembly ‘language pro-
gramming for those who have an immediate application in mind.

QUICK SUMMARY FOR
EXPERIENCED PROGRAMMERS

For those who are familiar with assembly language programming on other pro-
cessors, we provide here a brief review of the peculiarities of the 6502. Being
aware of these unusual features can save you a great deal of time and trouble.

1. The Carry flag acts as an inverted borrow in subtraction. A Subtract (SBC)
or Compare (CMP, CPX, or CPY) instruction clears the Carry if the operation
requires a borrow and sets it if it does not. The SBC instruction accounts for this
inversion by subtracting 1—Carry from the usual difference. Thus, the Carry has
the opposite meaning after subtraction (or comparison) on the 6502 than it has
on most other computers. :

2. The only Addition and Subtraction instructions are ADC (Add with Carry)
and SBC (Subtract with Carry). If you wish to exclude the Carry flag, you must
clear it before addition or set it before subtraction. That is, you can simulate a
normal Add instruction with

CLC
ADC MEMORY
and a normal Subtract instruction with
SEC
SBC MEMORY

3. There are no 16-bit registers and no operations that act on 16-bit quantities.
The lack of 16-bit registers is commonly overcome by using pointers stored on
page 0 and the indirect indexed (postindexed) addressing mode. However, both
initializing and changing those pointers require sequences of 8-bit operations.

4. There is no true indirect addressing except with JMP. For many other
instructions, however, you can simulate indirect addressing by clearing index
register Y and using indirect indexed addressing, or by clearing index register X
and using indexed indirect addressing. Both of these modes are limited to indirect
addresses stored on page 0.

. 5. The stack is always on page 1 of memory. The stack pointer contains the
less significant byte of the next empty address. Thus, the stack is limited to 256
bytes of memory. ‘

ca

CHAPTER 1: GENERAL PROGRAMMING METHODS 3

6. The JSR (Jump to Subroutine) instruction saves the address of its own
third byte in the stack, that is, JSR saves the return address minus 1. RTS
(Return from Subroutine) loads the program counter from the top of the stack
and then adds 1 to it. You must remember this offset of 1 in debugging and using
JSR or RTS for purposes other than ordinary calls and returns.

7. The Decimal Mode (D) flag is used to perform decimal arithmetic. When
this flag is set, all additions and subtractions produce decimal results. Increments
and decrements, however, produce binary resuits regardless of the mode. The
problem with this approach is that you may not be sure of the initial or current
state of the D flag (the processor does not initialize it on Reset). A simple way to
avoid problems in programs that use Addition or Subtraction instructions is to
save the original D flag in the stack, assign D the appropriate value, and restore
the original value before exiting. Interrupt service routines, in particular, should
always either set or clear D before executing any addition or subtraction instruc-
tions. The PHP (Store Status Register in Stack) and PLP (Load Status Register
from Stack) instructions can be used to save and restore the D flag, if necessary.
The overall system startup routine must initialize D (usually to 0, indicating bin-
ary mode, with CLD). Most 6502-based operating systems assume the binar
mode as a default and always return to that mode as soon as possible. '

A minor quirk of the 6502’s decimal mode is that the Zero and Negative flags
are no longer universally valid. These flags reflect only the binary result, not the
decimal result; only the Carry flag always reflects the decimal result. Thus, for
example, subtracting 80,, from 50, in the decimal mode sets the Negative flag
(since the binary result is DO, 6), even though the decimal result (7016) has a most
significant bit of 0. Similarly, adding 50, and 50, in the decimal mode clears the
Zero flag (since the binary result is A0,,), even though the decimal result is zero.
Note that adding 50,, and 50, in the decimal mode does set the Carry. Thus when
working in the decimal mode, the programmer should use only branches that
depend on the Carry flag or operations that do not depend on the mode at all
(such as subtractions or comparisons followed by branches on the Zero flag).

8. Ordinary Load (or Pull from the Stack) and Transfer instructions (except
TXS) affect the Negative (Sign) and Zero flags. This is not the case with the 8080,
8085, or Z-80 microprocessors. Storing data in memory does not affect any flags.

9. INC and DEC cannot be applied to the accumulator. To increment A, use

CLC

ADC #1 ; INCREMENT ACCUMULATOR BY 1

To decrement A, use

SEC
SBC #1 ;DECREMENT ACCUMULATOR BY 1

4 6502 ASSEMBLY LANGUAGE SUBROUTINES

10. The index registers are only 8 bits long. This creates obvious problems in
handling arrays or areas of memory that are longer than 256 bytes. To overcome
this, use the indirect indexed (postindexed) addressing mode. This mode allows
you to store the starting address of the array in two memory locations on page 0.
Whenever the program completes a 256-byte section, it must add 1 to the more
significant byte of the indirect address before proceeding to the next section. The
processor knows that it has completed a section when index register Y returns to
0. A typical sequence is '

INY ; PROCEED TO NEXT BYTE
BNE LOOP ;UNLESS A PAGE 1S DONE
INC INDR+1 ; IF ONE IS GO ON TO THE NEXT PAGE

Memory location INDR+1 (on page 0) contains the most significant byte of the
indirect address.

11. 16-bit counters may be maintained in two memory locations. Counting up
is much easier than counting down since you can use the sequence

INC COUNTL ;COUNT UP LESS SIGNIFICANT BYTE
BNE LOOP _
INC COUNTH - - ;CARRYING TO MSB IF NECESSARY

JMP LOOP

COUNTL contains the less significant byte of a 16-bit counter and COUNTH the
more significant byte. Note that we check the Zero flag rather than the Carry flag
since, as on most computers, Increment and Decrement instructions do not
affect Carry.

12. The BIT instruction (logical AND with no result saved) has several
unusual features. In the first place, it allows only direct addressing (absolute and
zero page). If you want to test bit 3 of memory location ADDR, you must use the
sequence :

LDA $200001000

BIT ADDR
BIT also loads.the Negative and Overflow flags with the contents of bits 7 and 6 of
the memory location, respectively, regardless of the value in the accumulator.
Thus, you can perform the following operations without loading the accumulator
at all. Branch to DEST if bit 7 of ADDR lS 1

BIT ADDR

BM1 DEST
Branch to DEST if bit 6 of ADDR is 0
BIT ADDR

BVC DEST

Of course, you should document the special use of the Overﬂow flag for later
reference.

CHAPTER 1: GENERAL PROGRAMMING METHODS 5

13. The processor lacks some common instructions that are available on the
6800, 6809, and similar processors. Most of the missing instructions are easy to
simulate, although the documentation can become awkward. In particular, we
should mention Clear (use load immediate with 0 instead), Complement (use
logical EXCLUSIVE OR with the all 1s byte instead), and the previously men-
tioned Add (without carry) and Subtract (without borrow). There is also no direct
way to load or store the stack pointer (this can be done through index register X),
load or store the status register (this can be done through the stack), or perform
operations between registers (one must be stored in memory). Other missing
instructions include Unconditional Relative Branch (use jump or assign a value
to a flag and branch on it having that value), Increment and Decrement
Accumulator (use the Addition and Subtraction instructions), Arithmetic Shift
(copy bit 7 into Carry and rotate), and Test zero or minus (use a comparison with
0 or an increment, decrement sequence). Weller' describes the definition of
macros to replace the missing instructions.

14. The 6502 uses the following common conventions:

- 16-bit addresses are stored with the less significant byte first. The order of
the bytes is the same as in the 8080, Z-80, and 8085 microprocessors, but
opposite the order used in 6800 and 6809.

+ The stack pointer contains the address (on page 1) of the next available loca-
tion. This convention is also used in the 6800, but the obvious alternative (last
occupied location) is used in the 8080, 8085, Z-80, and 6809 MIiCTOpProcessors.
Instructions store data in the stack using postdecrementing (they subtract 1 from
the stack pointer after storing each byte) and load data from the stack using
preincrementing (they add 1 to the stack pointer before loading each byte).

+ The I (Interrupt) flag acts as a disable. Setting the flag (with SEI) disables the
maskable interrupt and clearing the flag (with CLI) enables the maskable inter-
rupt. This convention is the same as in the 6800 and 6809 but the opposite of that
used in the 8080, 8085, and Z-80.

THE REGISTER SET

The 6502 assembly language programmer’s work is complicated considerably
by the processor’s limited register set. In particular, there are no address-length
(16-bit) user registers. Thus, variable addresses must normally be stored in pairs
of memory locations on page 0 and accessed indirectly using either preindexing
(indexed indirect addressing) or postindexing (indirect indexed addressing). The
lack of 16-bit registers also complicates the handling of arrays or blocks that
occupy more than 256 bytes of memory.

6 6502 ASSEMBLY LANGUAGE SUBROUTINES

If we consider memory locations on page 0 as extensions of the register set, we
may characterize the registers as follows:

. The accumulator is the center of data processing and is used as a source and
destination by most arithmetic, logical, and other data processing instructions.

. Index register X is the primary index register for non-indirect uses. It is the
only register that normally has a zero page indexed mode (except for the LDX
STX instructions), and it is the only register that can be used for indexing with
single-operand instructions such as shifts, increment, and decrement. It is also
‘the only register that can be used for preindexing, although that mode is not com-
mon. Finally, it is the only register that can be used to load or store the stack
pointer.

. Index register Y is the primary index register for indirect uses, since it is the
only register that can be used for postindexing.

. Memory locations on page 0 are the only locations that can be accessed with
the zero page (direct), zero page indexed, preindexed, and postindexed address-
ing modes.

Tables 1-1 through 1-7 contain lists of instructions having particular features.
Table 1-1 lists instructions that apply only to particular registers and Table 1-2
lists instructions that can be applied directly to memory locations. Tables 1-3
through 1-7 list instructions that allow particular addressing modes: zero page
(Table 1-3), absolute (Table 1-4), zero page indexed (Table 1-5), absolute
indexed (Table 1-6), and preindexing and postindexing (Table 1-7).

We may describe the special features of particular registers as follows:

. Accumulator. Source and destination for all arithmetic and logical instruc-
tions except CPX, CPY, DEC, and INC. Only register that can be shifted with a
single instruction. Only register that can be loaded or stored using preindexed or
postindexed adgressing.

. Index':re.gister X. Can be incremented using INX or decremented using
DEX. Only register that can be used as an index in preindexing. Only register that
can be used to load or store the stack pointer. .

- Index register Y. Can be incremented using INY or decremented using
DEY. Only register that can be used as an index in postindexing.

- Memory locations on page 0. Only memory locations that can hold indirect
addresses for use in postindexing or preindexing. Only memory locations that can
be accessed using zero page or zero page indexed addressing.

. Status register. Can only be stored in tr_le stack using PHP or loaded from
the stack using PLP.

W

CHAPTER 1: GENERAL PROGRAMMING METHODS 7

Table 1-1: Registers and Applicable Instructions

Register Instructions
A ADC, AND, ASL, BIT, CMP, EOR, LDA, LSR, ORA, PHA, -
PLA, ROL, ROR, SBC, STA, TAX, TAY, TXA, TYA
P (processor status) PHP, PLP (CLC, CLD, CLV, SEC, and SED affect

S (stack pointer)

X
Y

particular flags)
JSR, PHA, PHP, PLA, PLP, RTS, TSX, TXS
CPX, DEX, INX, LDX, STX, TAX, TSX, TXA, TXS
CPY, DEY, INY, LDY, STY, TAY, TYA

Table 1-2: Instructions That Can Be Applied Directly to Memory Locations

Instruction Function
ASL Arithmetic shift left
BIT Bit test (test bits 6 and 7)
DEC Decrement by 1
INC Increment by 1
LSR Logical shift right
ROL Rotate left
ROR Rotate right

Table 1-3: Instructions That Allow Zero Page Addressing

Instruction Function
ADC Add with Carry
AND Logical AND
ASL Arithmetic shift left
BIT Bit test
CMP Compare memory and accumulator
CPX Compare memory and index register X
CPY Compare memory and index register Y
DEC Decrement by 1
EOR Logical EXCLUSIVE OR
INC Increment by 1
LDA Load accumulator
LDX Load index register X
LDY Load index register Y
LSR Logical shift right
ORA Logical OR
ROL Rotate left
ROR Rotate right
SBC Subtract with Carry
STA Store accumulator
STX Store index register X
STY Store index register Y

8 6502 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-4: Instructions That Allow Absolute (Direct) Addressing

Instruction Function
ADC Add with Carry
AND Logical AND
ASL Arithmetic shift left
BIT Logical bit test
CMP Compare memory and accumulator
CPX Compare memory and index register X
CPY Compare memory and index register Y
DEC Decrement by 1
EOR Logical EXCLUSIVE OR
INC Increment by 1
IMP Jump unconditional
JSR Jump to subroutine
LDA Load accumulator
LDX Load index register X
LDY Load index register Y
LSR Logical shift right
ORA Logical OR
ROL Rotate left
ROR Rotate right
SBC Subtract with Carry
STA Store accumulator
STX Store index register X
STY ' Store index register Y

Table 1-5: Instructions That Allow Zero Page Indexed Addressing

Instruction Function
ADC Add with Carry
AND Logical AND
ASL Arithmetic shift left
CMP Compare memory and accumulator
e DEC Decrement by 1
- EOR . Logical EXCLUSIVE OR
& INC Increment by 1
’Eo LDA Load accumulator
o LDY Load index register Y
% LSR Logical shift right
B ORA Logical OR
- ROL Rotate left
ROR Rotate right
SBC Subtract with Carry
STA Store accumulator
STY Store index register Y
Ed
5
= LDX Load index register X
5 STX Store index register X
»
]
£

; N

CHAPTER 1: GENERAL PROGRAMMING METHODS 9

Table 1-6: Instructions That Allow Absolute Indexed Addressing

Instruction Function
ADC Add with Carry
AND Logical AND
ASL Arithmetic shift left
CMP Compare memory and accumulator
» DEC Decrement by 1
E EOR Logical EXCLUSIVE OR
= INC Increment by 1
& LDA Load accumulator
" LDY Load index register Y
= LSR Logical shift right
= ORA Logical OR
ROL © Rotate left
ROR Rotate right
SBC : Subtract with Carry
. STA Store accumulator
- ADC Add with Carry
. AND Logical AND
% CMP Compare memory and accumulator
'gn EOR Logical EXCLUSIVE OR
o LDA Load accumulator
z LDX Load index register X
= ORA Logical OR
- SBC Subtract with Carry
STA Store accumulator

Table 1-7: Instructions That Allow Postindexing and Preindexing

Instruction Function
ADC Add with Carry
AND Logical AND
CMP . Compare memory and accumulator
EOR Logical EXCLUSIVE OR
LDA Load accumulator
ORA Logical OR
SBC Subtract with Carry
STA Store accumulator

10 6502 ASSEMBLY LANGUAGE SUBROUTINES

- Stack pointer. Always refers to an address on page 1. Can only be loaded
from or stored in index register X using TXS and TSX, respectively.

Note the following:

. Almost all data processing involves the accumulator, since it provides one
operand for arithmetic and logical instructions and the destination for the result.

- Only a limited number of instructions operate directly on the index registers
or on memory locations. An index register can be incremented by 1, decre-
mented by 1, or compared to a constant or to the contents of an absolute address.
The data in a memory location can be incremented by 1, decremented by 1,
shifted left or right, or rotated left or right.

. The available set of addressing methods’ varies greatly from instruction to
instruction. Note in particular the limited sets available with the instructions BIT,
CPX, CPY, LDX, LDY, STX, and STY.

Register Transfers

Only a limited number of direct transfers between registers are provided. A
single instruction can transfer data from an index register to the accumulator,
from the accumulator to an index register, from the stack pointer to index
register X, or from index register X to the stack pointer. The mnemonics for the
transfer instructions have the form TSD, where ‘S’ is the source register and
“D* is the destination register as in the convention proposed in IEEE Standard
694.2 The status (P) register may only be transferred to or from the stack using
PHP or PLP.

LOADING REGISTERS FROM MEMORY

The 6502 microprocessor offers many methods for loading registers from
memory. The following addressing modes are available: zero page (direct),
absolute (direct), immediate zero page indexed, absolute indexed, postindexed,
and preindexed. Osborne? describes all these modes in Chapter 6 of An Introduc-
tion to Microcomputers: Volume 1 — Basic Concepts.

Direct Loading of Registers

The accumulator, index register X, and index register Y can be loaded from
memory using direct addressing. A special zero page mode loads registers from

ot
-4

CHAPTER 1: GENERAL PROGRAMMING METHODS 11

addresses on page 0 more rapidly than from addresses on other pages. Ter-
minology for 6502 refers to zero page direct addressing as zero page addressing and
to the more general direct addressing as absolute addressing.

Examples

1. LDA $40

This instruction loads the accumulator from memory location 0040,,. The
special zero page addressing mode requires less time and memory than the more -
general absolute (direct) addressing.

2. LDX $cCooo

This instruction loads index register X from memory location C000,,. It uses
absolute (direct) addressing. '

Immediate Loading of Registers

This method can be used to load the accumulator, index register X, or index
register Y with a specific value.
Examples

1. LDY #6

This instruction loads index register Y with the number 6. The 6 is an 8-bit
data item, not a 16-bit address; do not confuse the number 6 with the address
0006, .

2. LDA #*S$E3 ‘
This instruction loads the accumulator with the number E3,..

Indexed Loading of Registers

The instructions LDA, LDX, and LDY can be used in the indexed mode. The
limitations are that index register X cannot be loaded using X as an index;
similarly, index register Y cannot be loaded using Y as an index. As with direct
addressing, a special zero page mode is provided. Note, however, that the
accumulator cannot be loaded in the zero page mode using Y as an index.

Examples

1. LDA $0340,X

This instruction loads the accumulator from the address obtained by indexing
with index register X from the base address 0340, ; that is, the effective address is

0340,,+ (X). This is the typical indexing described in An Introduction to
Microcomputers: Volume 1 — Basic Concepts.*

12 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. LDX $40,Y

This instruction loads index register X from the address obtained by indexing
with register Y from the base address 0040,,. Here the special zero page indexed
mode saves time and memory.

Postindexed Loading of Registers

The instruction LDA can be used in the postindexed mode, in which the base
address is taken from two memory locations on page 0. Otherwise, this mode is
the same as regular indexing.

Example
LDA (840),Y

This instruction loads the accumulator from the address obtained by indexing
with index register Y from the base address in memory locations 0040, and
0041, ,. This mode is restricted to page 0 and index register Y. It also assumes that
the indirect address is stored with its less significant byte first (at the lower
address) in the usual 6502 manner.

Preindexed Loading of Registers

The instruction LDA can be used in the preindexed mode, in which the
indexed address is itself used indirectly. This mode is restricted to page 0 and
index register X. Note that it also assumes the existence of a table of 2-byte
indirect addresses, so that only even values in X make sense.

Example

LDA ($40,X)

This instruction loads the accumulator from the indirect address obtained by
indexing with register X from the base address 0040,,. The indirect address is in
the two bytes of memory starting at 0040, + (X). This mode is uncommon; one
of its uses is to select from a table of device addresses for input/output.

Stack Loading of Registers

The instruction PLA loads the accumulator from the top of the stack and
subtracts 1 from the stack pointer. The instruction PLP is similar, except that it
loads the status (P) register. This is the only way to load the status register with a
specific value. The index registers cannot be loaded directly from the stack, but

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 3

they can be loaded via the accumulator. The required sequences are
(for index register X)

PLA ;TOP OF STACK TO A
TAX ;AND ON TO X

(for index register Y)

PLA ;TOP OF STACK TO A
TAY ;AND ON TO Y

The stack has the following special features:

» It is always located on page 1 of memory. The stack pointer contains only the
less significant byte of the next available address.

- Data is stored in the stack using postdecrementing — the instructions decre-
ment the stack pointer by 1 after storing each byte. Data is loaded from the stack
using preincrementing — the instructions increment the stack pointer by 1 before
loading each byte.

+ As is typical with microprocessors, there are no overflow or underflow
indicators.

STORING REGISTERS
IN MEMORY

The same approaches that we used to load registers from memory can also be
used to store registers in memory. The only differences between loading and stor-
ing registers are

* Store instructions do not allow immediate addressing. There is no way to
directly store a number in memory. Instead, it must be transferred through a
register.

* STX and STY allow only zero page indexed addressing. Neither allows
absolute indexed addressing.

* Asyou might expect, the order of operations in storing index registers in the
stack is the opposite of that used in loading them from the stack. The sequences
are

(for index register X)

TXA ;MOVE X TO A

PHA :AND THEN TO TOP OF STACK
(for index register Y)

TYA ;MOVE Y TO A

PHA ;AND THEN TO TOP OF STACK

14 6502 ASSEMBLY LANGUAGE SUBROUTINES

Other storage operations operate in exactly the same manner as described in
the discussion of loading registers.
Examples

1. STA $50

This instruction stores the accumulator in memory location 0050l6 The special
zero page mode is both shorter and faster than the absolute mode since the more
significant byte of the address is assumed to be 0. .

2. STX $17E8

This instruction stores index register X in memory location 17E8, . It uses the
absolute addressing mode with a full 16-bit address.

3. STA $A000,Y

This instruction stores the accumulator in the effective address obtained by
adding index register Y to the base address A000,,. The effective address is
A000,,+ (Y).

4. STA (850),Y

This instruction stores the accumulator in the effective address obtained by
adding index register Y to the base address in memory locations 0050,, and
0051 . The instruction obtains the base address indirectly.

5. STA ($43,X)

This instruction stores the accumulator in the effective address obtained
indirectly by adding index register X to the base 0043 . The indirect address isin
the two bytes of memory starting at 0043+ (X).

STORING VALUES IN RAM

The normal way to initialize RAM locations is through the accumulator, one
byte at a time. The programmer can also use index registers X and Y for this pur-
pose.

Examples
1. Store an 8-bit item (VALUE) in address ADDR.
_LDA #VALUE ;GET THE VALUE
STA ADDR ;INITIALIZE LOCATION ADDR

We could use either LDX, STX or LDY, STY instead of the LDA, STA
sequence. Note that the 6502 treats all values the same; there is no special
CLEAR instruction for generating Os.

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 5

2. Store a 16-bit item (POINTER) in addresses ADDR and ADDR+1 (MSB
in ADDR+1).

We assume that POINTER consists of POINTH (more significant byte) and
POINTL (less significant byte).

LDA #POINTL ;GET LSB

STA ADDR ;INITIALIZE LOCATION ADDR
LDA #POINTH ;GET MSB

STA ADDR+1 ;INITIALIZE LOCATION ADDR+1

This method allows us to initialize indirect addresses on page 0 for later use with
postindexing and preindexing,.

ARITHMETIC AND LOGICAL
.OPERATIONS

Most arlthmetlc and logical operations (addition, subtraction, AND, OR, and
EXCLUSIVE OR) can be performed only between the accumulator and an 8-bit
byte in memory. The result replaces the operand in the accumulator. Arithmetic
and logical operations may use immediate, zero page (direct), absolute (direct),
indexed, zero page indexed, indexed indirect, or indirect indexed addressing.
Examples

1. Add memory location 0040, to the accumulator with carry.

ADC $40
This instruction adds the conténts of memory location 0040, and the contents of
the Carry flag to the accumulator.

2. Logically OR the accumulator with the contents of an indexed address
obtained using index register X and the base 17EQ,,.

ORA $17E0,X
Theé effective address is 17E0,, + (X).

3. Logically AND the accumulator with the contents of memory location
B470
16*

AND $B470
Note the following special features of the 6502’s arithmetic and logical instruc-
tions:

- The only addition instruction is ADC (Add with Carry). To exclude the
Carry, you must clear it explicitly using the sequence

CLC sMAKE CARRY ZERO
ADC $40 ;ADD WITHOUT CARRY

1 6 6602 ASSEMBLY LANGUAGE SUBROUTINES

- The only subtraction instruction is SBC (Subtract with Borrow). This
instruction subtracts a memory location and the complemented Carry flag from
the accumulator. SBC produces

(A) = (A) — (M) — (1—CARRY)

where M is the contents of the effective address. To exclude the Carry, you must
set it explicitly using the sequence

SEC . sMAKE INVERTED BORROW ONE
SBC $40 :SUBTRACT WITHOUT CARRY

Note that you must set the Carry flag before a subtraction, but clear it before an
addition.

- Comparison instructions perform subtractions without changing registers
(except for the flags in the status register). Here we have not only CMP (Com-
pare Memory with Accumulator), but also CPX (Compare Memory with Index
Register X) and CPY (Compare Memory with Index Register Y). Note the
differences between CMP and SBC; CMP does not include the Carry in the
subtraction, change the accumulator, or affect the Overflow flag.

. There is no explicit Complement instruction. However, you can comple-
ment the accumulator by EXCLUSIVE ORing it with a byte which contains all 1s
(11111111, or FF,;). Remember, the EXCLUSIVE OR of two bits is 1 if they are
different and 0 if they are the same. Thus, EXCLUSIVE ORing with a 1 will pro-
duce a result of 0 if the other bit is 1 and 1 if the other bit is 0, the same as a logical
complement (NOT instruction).

Thus we have the instruction

EOR #%11111111 ;COMPLEMENT ACCUMULATOR

- The BIT instruction performs a logical AND but does not return a result to
the accumulator. It affects only the flags. You should note that this instruction
allows only direct addressing (zero page or absolute); it does not allow immediate
or indexed addressing. More complex operations require several instructions;
typical examples are the following:

« Add memory locations OPER1 and OPER2, place result in RESLT

LDA OPERI1 ;GET FIRST OPERAND
CLC ;MAKE CARRY ZERO

- -ADC OPER2 ;ADD SECOND OPERAND
STA RESLT ;SAVE SUM

Note that we must load the first operand into the accumulator and clear the Carry
before adding the second operand.

i

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 7

* Add a constant (VALUE) to memory location OPER.

LDA OPER ;GET CURRENT VALUE

CLC ;MAKE CARRY ZERO

ADC $VALUE ;ADD VALUE

STA OPER ;STORE SUM BACK
If VALUE is 1, we can shorten this to

INC OPER ;ADD 1 TO CURRENT VALUE
Similarly, if VALUE is —1, we have

DEC OPER ;SUBTRACT 1 FROM CURRENT VALUE

BIT MANIPULATION

The programmer can set, clear, complement, or test bits by means of logical
operations with appropriate masks. Shift instructions can rotate or shift the
accumulator or a memory location. Chapter 7 contains additional examples of bit
manipulation.

You may operate on individual bits in the accumulator as follows:

+ Set them by logically ORing with s in the appropriate positions.

+ Clear them by logically ANDing with Os in the appropriate positions.

» Invert (complement) them by logically EXCLUSIVE ORing with 1s in the
appropriate positions.

- Test them by logically ANDing with 1s in the appropriate positions.
Examples

1. Set bit 6 of the accumulator.

ORA #%01000000 ;SET BIT. 6 BY ORING WITH 1

2. Clear bit 3 of the accumulator.

AND #811110111 ;CLEAR BIT 3 BY ANDING WITH 0

3. Invert (complement) bit 2 of the accumulator.

EOR #300000100 ;INVERT BIT 2 BY XORING WITH 1

4. Test bit S of the accumulator. Clear the Zero flag if bit 5 is a logic 1 and set
the Zero flag if bit 5 is a logic 0.

AND #%00100000 ;TEST BIT 5 BY ANDING WITH 1

You can change more than one bit at a time by changing the masks.
5. Set bits 4 and 5 of the accumulator.
ORA #300110000 ;SET BITS 4 AND 5 BY ORING WITH 1

1 8 6502 ASSEMBLY LANGUAGE SUBROUTINES

6. Invert (complement) bits 0 and 7 of the accumulator.
EOR 4%10000001 ;INVERT BITS 0 AND 7 BY XORING WITH 1

The only general way to manipulate bits in other registers or in memory is by
moving the values to the accumulator.

- Set bit 4 of memory location 0040, .

LDA $40
ORA $$00010000 ;SET BIT 4 BY ORING WITH 1
STA $40

- Clear bit 1 of memory location 17EOQ,.

LDA $17E0 .
AND $311111101 ;CLEAR BIT 1 BY ANDING WITH 0
STA $17E0 .

An occasional, handy shortcut to clearing or setting bit 0 of a register or
memory location is using an increment (INC, INX, or INY) to set it (if you know
that it is 0) and a decrement (DEC, DEX, or DEY) to clear it (if you know that it
is 1). If you do not care about the other bit positions, you can also use DEC or
INC. These shortcuts are useful when you are storing a single 1-bit flag in a byte
of memory. ‘

The instruction LSR (ASL) shifts the accumulator or a memory location right
(left) one position, filling the leftmost (rightmost) bit with a 0. Figures 1-1and 1-
2 describe the effects of these two instructions. The instructions ROL and ROR
provide a circular shift (rotate) of the accumulator or a memory location as shown
in Figures 1-3 and 1-4. Rotates operate as if the accumulator or memory location
and the Carry flag formed a 9-bit circular register. You should note the following:

. Left shifts set the Carry to the value that was in bit position 7 and the Nega-
tive flag to the value that was in bit position 6.

- Right shifts set the Carry to the value that was in bit position 0.

. Rotates preserve all the bits, whereas LSR and ASL destroy the old Carry
flag.

. Rotates allow you to move serial data between memory or the accumulator
and the Carry flag. This is useful in performing serial 1/0 and in handling single
bits of information such as Boolean indicators or parity.

Multibit shifts simply require the appropriate number of single-bit instruc-
tions.

Examples

1. Rotate accumulator right three positions.
ROR A
ROR A
ROR A

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 9

Original contents of Carry flag and accumulator or memory location
[B+[Bq [Bs[B:] B;[B.[Bi [Bo]
After ASL (Arithmetic Shift Left)

BB B J5: [T [T o]

Figure 1-1: The ASL (Arithmetic Shift Left) Instruction

Original contents of Carry flag and accumulator or memory location
[B [Bs[Bs[B, B:[B, B, [B]

After LSR (Logical Shift Right)

Lo]B:[B.[Bi[B[B.[B,)]

Figure 1-2: The LSR (Logical Shift Right) Instruction

Original contents of Carry flag and accumulator or memory location
Carry Data

[B1[B4[B; [B, [B, [B, B, [8, |

After ROL (Rotate Left)
Carry Data :

(BB [B. B, [B.[B, [B,[]

Figure 1-3: The ROL (Rotate Left) Instruction

Original contents of Carry flag and accumulator or memory location
Carry Data

(B- [[B:]B. B, [B; B, [B,

After ROR (Rotate Right)
Carry Data

< [,[B.[Bs[B.]B,]B,[B]

Figure 1-4: The ROR (Rotate Right) Instruction

20 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Shift memory location 1700, left logically four positions.

ASL $1700
ASL $1700
ASL $1700
ASL $1700

An alternative approach would be to use the accumulator; that is,
LDA $1700

ASL A
ASL A
ASL a
ASL A

STA $1700

The second approach is shorter (10 bytes rather than 12) and faster (16 clock
cycles rather than 24), but it destroys the previous contents of the accumulator.
You can implement arithmetic shifts by using the Carry flag to preserve the
current value of bit 7. Shifting right arithmetically is called sign extension, since it
copies the sign bit to the right. A shift that operates in this manner preserves the
sign of a two’s complement number and can therefore be used to divide or nor-
malize signed numbers. :
Examples

1. Shift the accumulator right 1 bit arithmetically, preserving the sign (most
> significant) bit.

TAX ;SAVE THE ACCUMULATOR

ASL A ;MOVE BIT 7 TO CARRY

TXA ;RESTORE THE ACCUMULATOR

ROR A :SHIFT THE ACCUMULATOR, COPYING BIT 7

When the processor performs ROR A, it moves the Carry (the old bit 7) to bit 7
and bit 7 to bit 6, thus preserving the sign of the original number.

2. Shift the accumulator left 1 bit arithmetically, preserving the sign (most sig-
nificant) bit. :

ASL A ;SHIFT A, MOVING BIT 7 TO CARRY
- ROL A ;SAVE BIT 7 IN POSITION O
TAX
LSR A ;CHANGE CARRY TO OLD BIT 7
TXA
ROR A ;SHIFT THE ACCUMULATOR, PRESERVING BIT 7
or
ASL A ;SHIFT A, MOVING BIT 7 TO CARRY
BCC CLRSGN ;WAS BIT 7 1?2
ORA #3100000U0 ; YES, THEN KEEP IT 1
BMI EXIT
CLRSGN AND #%01111111 ; NO, THEN KEEP IT ZERO

EXIT NOP
BMI EXIT always forces a branch.

CHAPTER 1: GENERAL PROGRAMMING METHODS 21

MAKING DECISIONS

We will now discuss procedures for making three types of decisions:

* Branching if a bit is set or cleared (a logic 1 or a logic 0).
* Branching if two values are equal or not equal.
» Branching if one value is greater than another or less than it.

The first type of decision allows the processor to sense the value of a flag,
switch, status line, or other binary (ON/OFF) input. The second type of decision
allows the processor to determine whether an input or a result has a specific value
(e.g., an input is a specific character or terminator or a result is 0). The third type
of decision allows the processor to determine whether a value is above or below a
numerical threshold (e.g., a value is valid or invalid or is above or below a warn-
ing level or set point). Assuming that the primary value is in the accumulator and
the secondary value (if needed) is in address ADDR, the procedures are as
follows. ‘

Branching Set or Cleared Bit

- Determine if a bit is set or cleared by logically AND:ing the accumulator with
a 1 in the appropriate bit position and Os in the other bit positions. The Zero flag
then reflects the bit value and can be used for branching (with BEQ or BNE).
Examples

1. Branch to DEST if bit S of the accumulator is 1.

AND #300100000 ;TEST BIT 5 OF A

BNE DEST
The Zero flag is set to 1 if and only if bit § of the accumulator is 0. Note the inver-
sion here. :

If we assume that the data is in address ADDR, we can use the BIT instruction
to produce an equivalent effect. To branch to DEST if bit 5 of ADDR is 1, we can
use either A

LDA ADDR
AND #%00100000
BNE DEST

or

LDA #300100000
BIT ADDR
BNE DEST

We must reverse the order of the operations, since BIT does not allow immediate
addressing. It does, however, leave the accumulator unchanged for later use.

22 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Branch to DEST if bit 2 of the accumulator is 0.

AND $%00000100 ;;TEST BIT 2 OF A
BEQ DEST

There are special short procedures for examining bit positions 0, 6, or 7. Bit 7 is
available readily as the Negative flag after a Load or Transfer instruction; bit O can
be moved to the Carry with LSR A or ROR A; bit 6 can be moved to the Negative
flag with ASL A or ROL A.

3. Branch to DEST if bit 7 of memory location ADDR is 1.

LDA ADDR ;IS BIT 7 12

BMI DEST ;YES, BRANCH

Note that LDA affects the Zero and Negative flags; so do transfer instructions
such as TAX, TYA, TSX (but not TXS), and PLA. Store instructions (including
PHA) do not affect any flags. -

4. Branch to DEST if bit 6 of the accumulator is 0.

ASL A ;MOVE BIT 6 TO BIT 7

BPL DEST

5. Branch to DEST if bit 0 of memory location ADDR is 1.
ROR ADDR :MOVE BIT 0 OF ADDR TO CARRY
BCS DEST ‘ ;AND THEN TEST THE CARRY

The BIT instruction has a special feature that allows one to readily test bit 6 or
bit 7 of a memory location. When the processor executes BIT, it sets the Negative
flag to the value of bit 7 of the addressed memory location and thé Overflow flag
to the value of bit 6, regardiess of the contents of the accumulator.

6. Branch to DEST if bit 7 of memory location ADDR is 0.

BIT ADDR ;TEST BIT 7 OF ADDR
BPL DEST

This sequence does not affect or depend on the accumulator.
7 Branch to DEST if bit 6 of memory location ADDR is 1.

BIT ADDR ;TEST BIT 6 OF ADDR
BVS DEST

This sequence requifes careful documentation, since the Overflow flag is being
used in a special way. Here again, the contents of the accumulator do not change
or affect the sequence at all.

Branching Based on Equality

. Determine if the value in the accumulator is equal to another value by
subtraction. The Zero flag will be set to 1 if the values are equal. The Compare

CHAPTER 1: GENERAL PROGRAMMING METHODS 23

instruction (CMP) is more useful than the Subtract instruction (SBC) because
Compare does not change the accumulator or involve the Carry.

Examples
1. Branch to DEST if the accumulator contains the number VALUE.
CMP #$VALUE ;IS DATA = VALUE?
BEG DEST :YES, BRANCH

We could also use index register X with CPX or index register Y with CPY.

* 2. Branch to DEST if the contents of the accumulator are not equal to the con-
tents of memory location ADDR.

CMP ADDR ;IS DATA = VALUE IN MEMORY?
BNE DEST ;NO, BRANCH

3. Branch to DEST if memory location ADDR contains 0.
LDA ADDR ;IS DATA ZERO?

BEQ DEST ;YES, BRANCH

We can handle some special cases without using the accumulator.

4. Branch to DEST if memory location ADDR contains 0, but do not change
the accumulator or either index register.

INC ADDR ;TEST MEMORY FOR ZERO

DEC ADDR

BEQ DEST :BRANCH IF IT IS FOUND

5. Branch to DEST if memory location ADDR does not contain 1.
DEC ADDR ;SET ZERO FLAG IF ADDR IS 1

BNE DEST

This sequence, of course, changes the memory. location.
6. Branch to DEST if memory location ADDR contains FF ..

INC ADDR ;SET ZERO FLAG IF ADDR IS FF
BEQ DEST .

INC does not affect the Carry flag, but it does affect the Zero flag. Note that you
cannot increment or decrement.the accumulator with INC or DEC.

Branching Based on Magnitude Comparisons

+ Determine if the contents of the accumulator are greater than or less than
some other value by subtraction. If, as is typical, the numbers are unsigned, the
Carry flag indicates which one is larger. Note that the 6502’s Carry flag is a nega-
tive borrow after comparisons or subtractions, unlike the true borrow produced
by such processors as the 8080, Z-80, and 6800. In general,

24 6502 ASSEMBLY LANGUAGE SUBROUTINES

. Carry = 1 if the contents of the accumulator are greater than or equal to the
value subtracted from it. Carry = 1 if the subtraction does not require (generate)
a borrow. ‘

- Carry = 0if the value subtracted is larger than the contents of the accumula-
tor. That is, Carry = 0 if the subtraction does require a borrow.

Note that the Carry is the inverse of a normal borrow. If the two operands are
equal, the Carry is set to 1, just as if the accumulator were larger. If, however, you
want equal values to affect the Carry as if the other value were larger, all that you
must do is reverse the identities of the operands, that is, you must subtract in
reverse, saving the accumulator in memory and loading it with the other value
instead.

Examples

1. Branch to DEST if the contents of the accumulator are greater than or equal
to the number VALUE.

CMP #VALUE ;IS DATA ABOVE VALUE?
BCS DEST ;YES, BRANCH

The Carry is set to 1 if the unsigned subtraction does not require a borrow.

2. Branch to DEST if the contents of memory address OPER1 are less than the
contents of memory address OPER2.

LDA OPER1 ;GET FIRST OPERAND
CMP OPER2 ;IS IT LESS THAN SECOND OPERAND?
BCC DEST ;YES, BRANCH

The Carry will be set to 0 if the subtraction requires a borrow.

3. Branch to DEST if the contents of memory address OPER1 are less than or
equal to the contents of memory address OPER2.

LDA OPER2 ;GET SECOND OPERAND .
CMP OPER1 ;IS IT GREATER THAN OR EQUAL TO FIRST?
BCS DEST ;YES, BRANCH

If we loaded the accumulator with OPER1 and compared to OPER2, we could
branch only on the conditions

. OPERI greater than or equal to OPER2 (Carry set)
- OPERI1 less than OPER2 (Carry cleared)

Since neither of these is what we want, we must handle the operands in the
opposite order.

If the values are signed, we must allow for the possible occurrence of two’s
complement overflow. This is the situation in which the difference between the
numbers cannot be contained in seven bits and, therefore, changes the sign of the
result. For example, if one number is +7 and the other is — 125, the difference is

CHAPTER 1: GENERAL PROGRAMMING METHODS 25

—132, which is beyond the capacity of eight bits (it is less than — 128, the most
negative number that can be contained in eight bits).

Thus, in the case of signed numbers, we must allow for the following two
possibilities:

- The result has the sign (positive or negative, as shown by the Negative flag)
that we want, and the Overflow flag indicates that the sign is correct.

» The result does not have the sign that we want, but the Overflow flag indi-
cates that two’s complement overflow has changed the real sign.

We have to look for both a true positive (the sign we want, unaffected by over-
flow) or a false negative (the opposite of the sign we want, but inverted by two’s
complement overflow).

Examples

1. Branch to DEST if the contents of the accumulator (a signed number) are
greater than or equal to the number VALUE.

SEC ;CLEAR INVERTED BORROW
SBC #VALUE ;PERFORM THE SUBTRACTION
BVS FNEG
BPL DEST ;TRUE POSITIVE, NO OVERFLOW
BMI DONE

FNEG BMI DEST sFALSE NEGATIVE, OVERFLOW

DONE NOP

2. Branch to DEST if the contents of the accumulator (a signed number) are
less than the contents of address ADDR.

SEC ;CLEAR INVERTED BORROW
SBC ADDR ; PERFORM THE SUBTRACTION
BVS FNEG
BMI DEST ;TRUE POSITIVE, NO OVERFLOW
BPL DONE
FNEG BPL DEST ;FALSE NEGATIVE, OVERFLOW
DONE NOP

Note that we must set the Carry and use SBC, because CMP does not affect the
Overflow flag.

Tables 1-8 and 1-9 summarize the common instruction sequences used to
make decisions with the 6502 microprocessor. Table 1-8 lists the sequences that
depend only on the value in the accumulator; Table 1-9 lists the sequences that
depend on numerical comparisons between the contents of the accumulator and a
specific value or the contents of a memory location. Tables 1-10 and 1-11 contain
the sequences that depend on an index register or on the contents of a memory
location alone.

26 6602 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-8: Decision Sequences Depending on the Accumulator Alone

Condition Flag-Setting Instruction Coﬁ':,i;:::l? al

Any bitof A =0 AND #MASK (1 in bit position) BEQ
Any bitof A = 1 AND #MASK (1 in bit position) BNE
Bit 7of A =0 ASL A or ROL A BCC

CMP #0 (preserves A) BPL
Bit 7of A =1 ASL Aor ROL A BCS

CMP #0 (preserves A) BMI
Bit 6of A =10 ASL Aor ROL A BPL
Bit6of A =1 ASL A or ROL A BMI
BitOof A =10 LSR A or ROR A BCC
Bit0of A =1 LSR AorROR A BCS
A) =0 LDA, PLA, TAX, TAY, TXA, or TYA BEQ
(A) #0 LDA, PLA, TAX, TAY, TXA, or TYA BNE
(A) positive (MSB = 0) LDA, PLA, TAX, TAY, TXA, or TYA BPL
(A) negative (MSB = 1) LDA, PLA, TAX, TAY, TXA, or TYA BMI

Table 1-9: Decision Sequences Depending on Numerical Comparisons

Condition Flag-Setting Instruction Cog;i;::::al
(A) = VALUE CMP #VALUE BEQ
(A) + VALUE CMP #VALUE BNE
(A) > VALUE (unsigned) CMP #VALUE BCS
(A) < VALUE (unsigned) CMP #VALUE BCC
(A) = (ADDR) CMP ADDR BEQ
(A) + (ADDR) CMP ADDR BNE
(A) = (ADDR) (unsigned) CMP ADDR BCS
(A) < (ADDR) (unsigned) CMP ADDR BCC

CHAPTER 1: GENERAL PROGRAMMING METHODS 27

Table 1-10: Decision Sequences Depending on an Index Register

- . Conditional
Condition Flag-Setting Instruction Branch
(XorY) =VALUE CPX or CPY #VALUE BEQ
(XorY) #+ VALUE CPX or CPY #VALUE BNE
(XorY) = VALUE (unsigned) CPX or CPY #VALUE BCS
(X orY) < VALUE (unsigned) CPX or CPY #VALUE BCC
(XorY) = (ADDR) CPX or CPY ADDR BEQ
(XorY) #+ (ADDR) CPX or CPY ADDR BNE
(X orY) = (ADDR) (unsigned) CPX or CPY ADDR BCS
(XorY) < (ADDR) (unsigned) CPX or CPY ADDR BCC

Table 1-11: Decision Sequences Depending on a Memory Location Alone

Condition Flag-Setting Instruction (s) Conditional
Branch

Bit7=0 BIT ADDR BPL
ASL ADDR or ROL ADDR BCC

Bit7 =1 BIT ADDR BMI
) ASL ADDR or ROL ADDR BCS

Bit6 =10 BIT ADDR BVC
ASL ADDR or ROL ADDR PBL

Bit6 =1 BIT ADDR BVS
ASL ADDR or ROL ADDR BMI

(ADDR) =0 INC ADDR, DEC ADDR BEQ
(ADDR) #+ 0 INC ADDR, DEC ADDR . BNE
Bit0 =0 LSR ADDR or ROR ADDR BCC
Bit0 =1 LSR ADDR or ROR ADDR BCS

28 6502 ASSEMBLY. LANGUAGE SUBROUTINES

LOOPING

The simplest way to implement a loop (that is, repeat a sequence of instruc-
tions) with the 6502 microprocessor is as follows:

1. Load an index register or memory location with the number of times the
sequence is to be executed.

2. Execute the sequence. - '
3. Decrement the index register or memory location by 1.
4. Return to Step 2 if the result of Step 3 is not 0.

Typical programs look like this:

LDX #NTIMES ;COUNT = NUMBER OF REPETITIONS
LOOP .

instructions to be repeated

DEX

BNE LOOP
Nothing except clarity stops us from counting up (using INX, INY, or INC); of
course, you must change the initialization appropriately. As we will see later, a
16-bit counter is much easier to increment than it is to decrement. In any case,
the instructions to be repeated must not interfere with the counting of the repeti-
tions. You can store the counter in either index register or any memory location.
Index register X’s special features are its use in preindexing and the wide
availability of zero page indexed modes. Index register Y’s special feature is its
use in postindexing. As usual, memory locations on page 0 are shorter and faster
to use than are memory locations on other pages.

Of course, if you use an index register-or a single memory location as a
counter, you are limited to 256 repetitions. You can provide larger numbers of
repetitions by nesting loops that use a single register or memory location or by
using a pair of memory locations as illustrated in the following examples:

+ Nested loops

LDX $NTIMM ;START OUTER COUNTER
LOCPO LDY #NTIML ;START INNER COUNTER

LOOPI .

instructions to be repeated

DEY ;DECREMENT LNNER COUNTER
BNE LOOPI
DEX ; DECREMENT OUTER COUNTER
BNE LOOPO

The outer loop restores the inner counter (index register Y) to its starting value

CHAPTER 1: GENERAL PROGRAMMING METHODS 29

(NTIML) after each decrement of the outer counter (index register X). The nest-
ing produces a multiplicative factor — the instructions starting at LOOPI are
repeated NTIMM x NTIML times. Of course, a more general (and more reasona-
ble) approach would use two memory locations on page 0 instead of two index
registers.

+ 16-bit counter in two memory locations

LDA #NTIMLC ;INITIALIZE LSB OF COUNTER
STA COUNTL
LDA #NTIMHC ;INITIALIZE MSB OF COUNTER
STA COUNTH
LOOP .
. instructions to be repeated
INC NTIMLC ; INCREMENT LSB OF COUNTER
BNE LOOP
INC NTIMHC ;AND CARRY TO MSB OF COUNTER IF NEEDED

BNE LOOP

The idea here is to increment only the less significant byte unless there is a carry
to the more significant byte. Note that we can recognize a carry only by checking
the Zero flag, since INC does not affect the Carry flag. Counting up is much
simpler than counting down; the comparable sequence for decrementing a 16-bit
counter is

LDA NTIML ;IS LSB OF COUNTER ZERO?
BNE CNTLSB
DEC NTIMH ;YES, BORROW FROM MSB
CNTLSB DEC NTIML DECREMENT LSB OF COUNTER
BNE LOOP ;CONTINUE IF LSB HAS NOT REACHED ZERO
LDA NTIMH ;OR IF MSB HAS NOT REACHED ZERO

BNE LOOP

If we count up, however, we must remember to initialize the counter to the
complement of the desired value (indicated by the names NTIMLC and
NTIMHC in the program using INC).

ARRAY MANIPULATION

The simplest way to access a particular element of an array is by using indexed
addressing. One can then

1. Manipulate the element by indexing from the starting address of the array.

2. Access the succeeding element (at the next higher address) by increment-
ing the index register using INX or INY, or access the preceding element (at the
next lower address) by decrementing the index register using DEX or DEY. One

30 6502 ASSEMBLY LANGUAGE SUBROUTINES

could also change the base; this is simple if the base is an absolute address, but
awkward if it is an indirect address.

3. Access an arbitrary element by loading an index register with its index.
Typical array manipulation procedures are easy to program if the array is one-
dimensional, the elements each occupy 1 byte, and the number of elements is
less than 256. Some examples are

. 'Add an element of an array to the accumulator. The base address of the array
is a constant. BASE. Update index register X so that it refers to the succeeding 8-
bit element.
ADC BASE, X ;ADD CURRENT ELEMENT
INX ;ADDRESS NEXT ELEMENT
~« Check to see if an element of an array is 0 and add 1 to memory location
ZCOUNT if it is. Assume that the address of the array is a constant BASE and its
index is in index register X. Update index register X so that it refers to the pre-
ceding 8-bit element.

.

LDA BASE, X ;GET CURRENT ELEMENT

BNE UPDDT ;IS ITS VALUE ZERO?
INC ZCOUNT :YES, ADD 1 TO COUNT OF ZEROS
UPDDT DEX ;ADDRESS PRECEDING ELEMENT

. Load the accumulator with the 35th element of an array. Assume that the
starting address of the array is BASE.

LDX $35 ;GET INDEX OF REQUIRED ELEMENT
LDA BASE, X ;OBTAIN THE ELEMENT

The most efficient way to process an array is to start at the highest address and
work backward. This is the best approach because it allows you to count the index
register down to 0 and exit when the Zero flag is set. You must adjust the
initialization and the indexed operations slightly to account for the fact that the 0
index is never used. The changes are

. Load the index register with the number of elements.
. Use the base address START—1, where START is the lowest address
actually occupied by the array.

If, for example, ‘we want to perform a summation starting at address START
and continuing through LENGTH elements, we use the program

LDX #LENGTH ;START AT THE END OF THE ARRAY

LDA #0 ;CLEAR THE SUM INITIALLY
ADBYTE = CLC v

ADC START-1,X ;ADD THE NEXT ELEMENT

DEX

BNE ADBYTE ;COUNT ELEMENTS

CHAPTER 1: GENERAL PROGRAMMING METHODS 31

Manipulating array elements becomes more difficult if you need more than one
element during each iteration (as in a sort that requires interchanging of ele-
ments), if the elements are more than one byte long, or if the elements are them-
selves addresses (as in a table of starting addresses) . The basic problem is the lack
of 16-bit registers or 16-bit instructions. The processor can never be instructed to
handle more than 8 bits. Some examples of more general array manipulation are

+ Load memory locations POINTH and POINTL with a 16-bit element of an
array (stored LSB first). The base address of the array is BASE and the index of
the element is in index register X. Update X so that it points to the next 16-bit
element.

LDA BASE, X ;GET LSB OF ELEMENT
STA POINTL

INX

LbA BASE, X :GET MSB OF ELEMENT
STA POINTH

INX ;ADDRESS NEXT ELEMENT

The single instruction LDA BASE+1,X loads the accumulator from the same
address as the sequence

INX
LDA BASE, X

assuming that X did not originally contain FF .. If, however, we are using a base
address indirectly, the alternatives are

INC PGZRO ; INCREMENT BASE ADDRESS
BNE INDEX
INC PGZRO+1 ;WITH CARRY IF NECESSARY
INDEX LDA (PGZRO) ,Y '
or
INY
LDA (PGZRO) , Y

- The second sequence is much shorter, but the first sequence will handle arrays

that are more than 256 bytes long.

* Exchange an element of an array with its successor if the two are not already
in descending order. Assume that the elements are 8-bit unsigned numbers. The
base address of the array is BASE and the index of the first number is in index
register X, ’

LDA BASE,X ;GET ELEMENT

CMP BASE+1,X ;IS SUCCESSOR SMALLER?

BCS DONE iNO, NO INTERCHANGE NECESSARY
PHA ;YES, SAVE ELEMENT

LDA BASE+1,X :INTERCHANGE

STA BASE, X '

PLA

. STA BASE+1,X
DONE INX ;ACCESS NEXT ELEMENT

32 6502 ASSEMBLY LANGUAGE SUBROUTINES

. Load the accumulator from the 12th indirect address in a table. Assume that
the table starts at the address BASE. :

LDX $24 ;GET DOUBLED OFFSET FOR INDEX

LDA BASE, X ;GET LSB OF ADDRESS

STA PGZRO ;SAVE ON PAGE ZERO

INX

LDA BASE, X ;GET MSB OF ADDRESS

STA PGZRO+1 ;SAVE ON PAGE ZERO

LDY #0

LDA (PGZRO) , Y ;LOAD INDIRECT BY INDEXING WITH ZERO

Note that you must double the index to handle tables containing addresses, since
each 16-bit address occupies two bytes of memory.

If the entire table is on page 0, we can use the preindexed (indexed indirect)
addressing mode.

LDX $#24 ;GET DOUBLED OFFSET FOR INDEX
LDA (BASE,X) ;LOAD FROM INDEXED INDIRECT ADDRESS

You still must remember to double the index. Here we must also initialize the
table of indirect addresses in the RAM on page 0.

We can generalize array processing by storing the base address in two locations
on page 0 and using the postindexed (indirect indexed) addressing mode. Now
the base address can be a variable. This mode assumes the use of page 0 and index
register Y and is available only for a limited set of instructions.

Examples

1. Add an element of an array to the accumulator. The base address of the
array is in memory locations PGZRO and PGZRO+ 1. The index of the element
is in index register Y. Update index register Y so that it refers to the succeeding 8-
bit element.

CLC ADC (PGZRO),Y ;ADD CURRENT ELEMENT

INY ;ADDRESS NEXT ELEMENT

2. Check to see if an element of an array is 0 and add 1 to memory location
ZCOUNT if it is. Assume that the base address of the array is in memory loca-
tions PGZRO and PGZRO+ 1. The index of the element is in index register Y.
Update index register Y so that it refers to the preceding 8-bit element.

LDA (PGZRO) , Y ;GET CURRENT ELEMENT

BNE UPDDT ;1S ITS VALUE ZERO?

INC ZCOUNT ;YES, ADD 1 TO CCUNT OF ZEROS
UPDDT DEY ;ADDRESS PRECEDING ELEMENT

Postindexing also lets us handle arrays that occupy more than 256 bytes. As we
noted earlier, the simplest approach to long counts is to keep a 16-bit comple-
mented count in two memory locations. If the array is described by a base address
on page 0, we can update that base whenever we update the more significant byte
of the complemented count. For example, if we want to clear an area of memory

P

CHAPTER 1: GENERAL PROGRAMMING METHODS 33

described by a complemented count in memory locations COUNTH and
COUNTL and an initial base address in memory locations PGZRO and
PGZRO+1, we can use the following program:

LDA #0 ;DATA = ZERO

TAY ;INDEX = ZERCG
CLEAR STA (PGZRO) ,Y ;CLEAR A BYTE

INY ;MOVE TO NEXT BYTE

BNE CHKCNT

INC PGZRO + 1 ;AND TO NEXT PAGE I1F NEEDED
CHKCNT INC COUNTL ;COUNT BYTES

BNE CLEAR

INC COUNTH iWITH CARRY TO MSB

BNE CLEAR

The idea here is to proceed to the next page by incrementing the more significant
byte of the indirect address when we finish a 256-byte section.

One can also simplify array processing by reducing the multiplications required
in indexing to additions. In particular, one can handle arrays of two-byte elements
by using ASL A to double an index in the accumulator.

Example

Load the accumulator from the indirect address indexed by the contents of
memory location INDEX. Assume that the table starts at address BASE.

LDA INDEX ;GET INDEX

ASL A iAND DOUBLE IT FCR 2-BYTE ENTRIES
TAX

LDA BASE, X ;GET LSB OF INDIRECT ADDRESS

STA PGZRO iSAVE ON PAGE ZERO

INX

LDA BASE, X iGET MSB OF INDIRECT ADDRESS

STA PGZRO + 1 iSAVE ON PAGE ZERO

LDY #0 ; PREINDEX WITH ZERO

LDA (PGZRO) ,Y

As before, if the entire table of indirect addresses is on page 0, we can use the
preindexed (indexed indirect) addressing mode.

LDA INDEX ;GET INDEX

ASL A ;DOUBLE INDEX FOR 2-BYTE ENTRIES
TAX

LDA (BASE, X) ;LOAD FROM INDEXED INDIRECT ADDRESS

You can handle indexing into longer arrays by using the postindexed (indirect
indexed) mode. Here we must construct a base address with an explicit addition
before indexing, since the 6502s index registers are only 8 bits long.

Example

Load the accumulator from the element of an array defined by a starting
address BASE (BASEH more significant byte, BASEL less significant byte) and a
16-bit index in memory locations INDEX and INDEX + 1 (MSB in.INDEX +1).

34 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA #BASEL ;MOVE LSB OF BASE TO PAGE ZERO
STA PGZRO

LDA #BASEH ;ADD MSB'S OF BASE AND INDEX
STA POINTL

CLC

ADC INDEX+1

STA PGZRO+1

LDY INDEX ;USE LSB OF INDEX EXPLICITLY
LDA (PGZRO) , ¥ ;GET ELEMENT

TABLE LOOKUP

Table lookup can be handled by the same procedures as array manipulation.
Some examples are

. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant) and the 8-bit index is in memory loca-
tion INDEX.

LDX INDEX ;GET INDEX
LDA BASE, X ;GET THE ELEMENT

The problem is more complicated if INDEX is a 16-bit number.

. Load the accumulator with an element from a table. Assume that the base
address of the table is BASE (a constant, made up of bytes BASEH and BASEL)
and the 16-bit index is'in memory locations INDEX and INDEX+1 (MSB in
INDEX+1).

The procedure is the same one we just showed for an array. You must add the
more significant byte of the index to the more significant byte of the base with an
explicit addition. You can then use postindexing to obtain the element.

. Load memory locations POINTH and POINTL with a 16-bit element from a
table. Assume that the base address of the table is BASE (a constant). and the
index is in memory location INDEX.

LDA INDEX ;GET THE INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES
TAX :

LDA BASE, X ;GET LSB OF ELEMENT

INX

LDA BASE, X ;GET MSB OF ELEMENT

STA POINTH

We can also handle the case in which the base address is a variable in two memory
locations on page 0 (PGZRO and PGZRO+1).

CHAPTER 1: GENERAL PROGRAMMING METHODS 35

LDA INDEX ;GET THE INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES
TAY

LDA (PGZRO) ,Y ;GET LSB OF ELEMENT

STA POINTL

INY

LDA (PGZRO) ,Y ;GET MSB OF ELEMENT

STA POINTH S

We can revise the program further to handle an array with more than 128 entries.

LDA INDEX ;GET THE INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES

BCC LDELEM

INC PGZRO+1 ;ADD CARRY TO INDIRECT ADDRESS
LDELEM TAY '

LDA (PGZRO) ,Y ;GET LSB OF ELEMENT

STA POINTL

INY

Lba (PGZRO) , Y ;GET MSB OF ELEMENT

STA POINTH
Still another extension handles a 16-bit index.

LDA INDEX ;GET LSB OF INDEX

ASL A ;DOUBLE IT

TAY

LDA INDEX+1 ;GET MSB OF INDEX

ROL A ;DOUBLE IT WITH CARRY
ADC PGZRO+1 ;{AND ADD RESULT TO INDIRECT ADDRESS
STA PGZRO+1

LDA (PGZRO) ,Y :{GET LSB OF ELEMENT
STA POINTL

INY

LDA (PGZRO) ,Y iGET MSB OF ELEMENT

STA POINTH

* Transfer control (jump) to a 16-bit address obtained from a table. Assume
that the base address of the table is BASE (a constant) and the index is in
memory location INDEX.

Here there are two options: Store the address obtained from the table in two
memory locations and use an indirect jump, or store the address obtained from
the table in the stack and use the RTS (Return from Subroutine) instruction.

OPTION 1: Indirect Jump

LDA INDEX ;GET INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES
TAX)
LDA BASE, X ;GET LSB OF DESTINATION ADDRESS
STA TEMP ;STORE LSB SOMEWHERE

INX

36 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA BASE, X ;GET MSB OF DESTINATION ADDRESS
STA TEMP+1 ;STORE MSB IN NEXT BYTE
JMP (TEMP) ; INDIRECT JUMP TG DESTINATION

IMP is the only 6502 instruction that has true indirect addressing. Note that
TEMP and TEMP+ 1 .can be anywhere in memory; they need not be on page 0.

OPTION 2: Jump Through the Stack

LDA INDEX ;GET INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES

TAX

INX

LDA BASE, X :GET MSB OF DESTINATION ADDRESS

PHA ;SAVE MSB IN STACK

DEX

LDA BASE,X ;GET LSB OF DESTINATION ADDRESS

PHA ;SAVE LSB IN STACK

RTS ;TRANSFER CONTROL TO DESTINATION

This alternative is awkward for the following reasons:

. RTS adds 1 to the program counter after loading it from the stack. Thus, the
addresses in the table must all be one less than the actual values to which you
wish to transfer control. This offset evidently speeds the processor’s execution of
the JSR (Jump to Subroutine) instruction, but it also can confuse. the pro-
grammer.

. You must remember that the stack is growing down in memory, toward
lower addresses. To have the destination address end up in its normal order (less
significant byte at lower address), we must push the more significant byte first.
This is essentially a double negative; we store the address in the wrong order but
it ends up right because the stack is growing down.

. The use of RTS is confusing. How can one return from a routine that one has
never called? In fact, this approach uses RTS to call a subroutine. You should
remember that RTS is simply a jump instruction that obtains the new value for
the program counter from the top of the stack. While the common use of RTS is
to transfer control from a subroutine back to a main program (hence, the
‘mnemonic), there is no reason to limit it to that function. The mnemonic may
confuse the programmer, but the microprocessor does exactly what it is supposed
to do. Careful documentation can help calm the nerves if you feel uneasy about
this procedure. :

The common uses of jump tables are to implement CASE statements (for
example, multiway branches as used in languages such as FORTRAN, Pascal,

CHAPTER 1: GENERAL PROGRAMMING METHODS 37

and PL/I) to decode commands from a keyboard, and to respond to function keys
on a terminal.

CHARACTER MANIPULATION

The easiest way to manipulate characters is to treat them as unsigned 8-bit
numbers. The letters and digits form ordered subsequences of the ASCII charac-
ters; for example, the ASCII representation of the letter A is one less than the
ASCII representation of the letter B. Handling one character at a time is just like
handling normal 8-bit unsigned numbers. Some examples are

* Branch to address DEST if the accumulator contains an ASCII E.

CMP #'E ;IS DATA E?
BEQ DEST ;YES, BRANCH

- Search a string starting at address STRNG until a non-blank character is
found.

LDX #0 i POINT TO START OF STRING
. LDA #' ;GET A BLANK FOR CHECKING

EXAMC CMP STRNG, X ;IS NEXT CHARACTER A BLANK?
BNE DONE i NO, DONE
INX iYES, PROCEED TO NEXT CHARACTER
JMP EXAMC

DONE NOP

or

LDX #SFF ;POINT TO BYTE BEFORE START
LDA #' ;GET A BLANK FOR COMPARISON

EXAMC INX ;PROCEED TO NEXT CHARACTER
cMP STRNG, X ;IS IT A BLANK?
BEG EXAMC iYES, KEEP LOOKING

* Branch to address DEST if the accumulator contains a letter between C and
F, inclusive. .
CMP $'C ;IS DATA BELOW C?

BCC DONE ;YES, DONE

CMP #'G ;IS DATA BELOW G?

BCC DEST ;YES, MUST BE BETWEEN C AND F
DONE NOP

Chapter 8 contains further examples of string manipulation.

CODE CONVERSION

You can convert data from one code to another using arithmetic or logical
operations (if the relationship is simple) or lookup tables (if the relationship is
complex). '

38 6502 ASSEMBLY LANGUAGE SUBROUTINES

Examples
1. Convert an ASCII digit to its binary-coded decimal (BCD) equivalent,
SEC ;CLEAR THE INVERTED BORROW
SBC $'0 ;CONVERT ASCII TO BCD

Since the ASCII digits form an ordered subsequence, all you must do is subtract
the offset (ASCII 0).
You can also clear bit positions 4 and 5 with the single instruction

AND $%$11001111 :CONVERT ASCII TO BCD

Either the arithmetic sequence or the logical instruction will, for example, con-
vert ASCII 0 (30,) to decimal 0 (00,).
2. Convert a binary-coded decimal (BCD) digit to its ASCII equivalent.

CLC ;CLEAR THE CARRY
ADC $'0 ;CONVERT BCD TO ASCII

The inverse conversion is equally simple. You can also set bit positions 4 and §
with the single instruction ,
ORA #%00110000 ;CONVERT BCD TO ASCII

Either the arithmetic sequence or the logical instruction will, for example, con-
vert decimal 6 (06,,) to ASCIL 6 (36,).

3. Convert one 8-bit code to another using a lookup table. Assume that the
lookup table starts at address NEWCD and is indexed by the value in the original
code (for example, the 27th entry is the value in the new code corresponding to
127 in the original code). Assume that the data is in memory location CODE.

- : LDX CODE ;GET THE OLD CODE
LDA NEWCD, X ;CONVERT IT TO THE NEW CODE

Chapter 4 contains further examples of code conversion.

MULTIPLE-PRECISION
ARITHMETIC

Multiple-precision arithmetic requires a series of 8-bit operations. One must

. Clear the Carry before starting addition or set the Carry before starting
subtraction, since there is never a carry into or borrow from the least significant
byte.

. Use the Add with Carry (ADC) or Subtract with Borrow (SBC) instruction
to perform an 8-bit operation and include the carry or borrow from the previous
operation.

CHAPTER 1: GENERAL PROGRAMMING METHODS 39

A typical 64-bit addition program is

LDX #8 ;NUMBER OF BYTES = 8
CLC) ;CLEAR CARRY TO START

ADDB: LDA NUM1-1,X ;GET A BYTE OF ONE OPERAND
ADC NUM2-1,X ;ADD A BYTE OF THE OTHER OPERAND
STA NUM1-1,X ;STORE THE 8-BIT SUM
DEX
BNE ADDB ;COUNT BYTE OPERATIONS

Chapter 6 contains further examples.

MULTIPLICATION AND
DIVISION

Multiplication can be implemented in a variety of ways. One technique is to
convert simple multiplications to additions or left shifts.

Examples
1. Multiply the contents of the accumulator by 2.
ASL A ;DOUBLE A
2. Multiply the contents of the accumulator by 5.
STA TEMP

ASL A ;A TIMES 2
ASL A ;A TIMES 4
ADC TEMP ;A TIMES 5

This approach assumes that shifting the accumulator left never produces a
carry. This approach is often handy in determining the locations of elements of
two-dimensional arrays. For example, let us assume that we have a set of tem-
perature readings taken at four different positions in each of three different tanks.
We organize the readings as a two-dimensional array T(I,]), where I is the tank
number (1, 2, or 3) and J is the number of the position in the tank (1, 2, 3, or 4).
We store the readings in the linear memory of the computer one after another as
follows, starting with tank 1:

BASE T(l,1) Reading at tank 1, location 1
BASE+1 T(1l,2) Reading at tank 1, location 2
BASE+2 T(1,3) Reading at tank 1, location 3
BASE+3 T(1,4) Reading at tank 1, location 4
BASE+4 T(2,1) Reading at tank 2, location 1
BASE+5 T(2,2) Reading at tank 2, location 2
BASE+6 T(2,3) Reading at tank 2, location 3
BASE+7 T(2,4) Reading at tank 2, location 4
BASE+8 T(3,1) Reading at tank 3, location 1
BASE+9 T(3,2) Reading at tank 3, location 2
BASE+10 T(3,3) Reading at tank 3, location 3
BASE+11 T(3,4) Reading at tank 3, location 4

40 6502 ASSEMBLY LANGUAGE SUBROUTINES

So, generally the reading T(I,J) is located at address BASE+4 x (I—1) +
(J=1). If L is in memory location IND1 and J is in memory location IND2, we can
load the accumulator with T(I,J) as follows:

LDA IND1 ;GET 1

SEC

SBC #1 ;CALCULATE I - 1
ASL A 12 X (I - 1)

ASL A ;4 X (I - 1)

SEC

SBC #1 74 X (I -1) -1
CLC

ADC IND2 4 X (I -1) +J3 -1
TAX

LDA BASE, X ;GET T(I,J)

We can extend this approach to handle arrays with more dimensions.

Obviously, the program is much simpler if we store I—1 in memory location
IND1 and J—1 in memory location IND2. We can then load the accumulator
with T(1,J) using

LDA IND1 ;GET I - 1

ASL A :2 X (I - 1)

ASL A ;4 X (I - 1)

CLC

ADC 1IND2 ;4 X (I - 1) +# (3 -1)

TAX

LDA BASE, X ;GET T(1.J)

. Simple divisions can also be implemented as right logical shifts.
Example

Divide the contents of the accumulator by 4.

LSR A ;DIVIDE BY 2

LSR A {AND BY 2 AGAIN

If you are multiplying or dividing signed numbers, you must be careful to sepa-
rate the signs from the magnitudes. You must replace logical shifts with
arithmetic shifts that preserve the value of the sign bit.

- Algorithms involving shifts and additions (multiplication) or shifts and
subtractions (division) can be used as described in Chapter 6.

. Lookup tables can be used as discussed previously in this chapter.

Chapter 6 contains additional examples of arithmetic programs.

LIST PROCESSINGS

Lists can be processed like arrays if the elements are stored in consecutive
addresses. If the elements are queued or chained, however, the limitations of the
instruction set are evident in that

T T T

CHAPTER 1: GENERAL PROGRAMMING METHODS 41

- No 16-bit registers or instructions are available.
- Indirect addressing is allowed only through pointers on page 0.
+ No true indirect addressing is available except for JMP instructions.

Examples

1. Retrieve an address stored starting at the address in memory locations
PGZRO and PGZRO+1. Place the retrieved address in memory locations
POINTL and POINTH.

LDY #0 ;INDEX = ZERO

LDA (PGZRO) ,Y ;GET LSB OF ADDRESS
STA POINTL

INY

LDA (PGZRO) , Y ;GET MSB OF ADDRESS
STA POINTH

This procedure allows you to move from one element to another in a linked list.

2. Retrieve data from the address currently in memory locations PGZRO and
PGZRO+1 and increment that address by 1.

LDY #0 ;INDEX = ZERO
LDA (PGZRO) ,Y ;GET DATA USING POINTER
INC PGZRO ;UPDATE POINTER BY 1
BNE DONE
INC PGZRO+1

DONE NOP

This procedure allows you to use the address in memory as a pointer to the next
available location in a buffer. Of course, you can also leave the pointer fixed and
increment a buffer index. If that index is in memory location BUFIND, we have

LDY BUFIND ;GET BUFFER INDEX
LDA (PGZRO) ,Y ;GET DATA FROM BUFFER
INC BUFIND sUPDATE BUFFER INDEX BY 1

3. Store an address starting at the address currently in memory locations
PGZRO and PGZRO+ 1. Increment the address in memory locations PGZRO
and PGZRO+1 by 2.

LDY #0 ;INDEX = ZERO

LDA #ADDRL ;SAVE LSB OF ADDRESS
STA (PGZRGO) , Y

LDA #ADDRH ;SAVE MSB OF ADDRESS .
INY

STA (PGZRO) ,Y

CLC ;INCREMENT POINTER BY 2
LDA PGZRO

ADC 2

STA PGZRO

BCC DONE sWITH CARRY IF NECESSARY
INC PGZRO+1

DONE NOP

42 6502 ASSEMBLY LANGUAGE SUBROUTINES

This procedure lets you build a list of addresses. Such a list could be used, for
example, to write threaded code in which each routine concludes by transferring
control to its successor. The list could also contain the starting addresses of a
series of test procedures or tasks or the addresses of memory locations or 1/0
devices assigned by the operator to particular functions. Of course, some lists
may have to be placed on page 0 in order to use the 6502’s preindexed or postin-
dexed addressing modes.

GENERAL DATA STRUCTURESS®

More general data structures can be processed using the procedures that we
have described for array manipulation, table lookup, and list processing. The key
limitations in the instruction set are the same ones that we mentioned in the dis-
cussion of list processing.

Examples

1. Queues or linked lists. Assume that we have a queue header consisting of
the address of the first element in memory locations HEAD and HEAD +1 (on
page 0). If there are no elements in the queue, HEAD and HEAD+1 both con-
tain 0. The first two locations in each element contain the address of the next ele-
ment or 0 if there is no next element.

. Add the element in memory locations PGZRO and PGZRO+1 to the head
of the queue.

LDX PGZRO ;REPLACE HEAD, SAVING OLD VALUE .
LDA HEAD

STX HEAD

PHA

LDA PGZRO+1

LDX HEAD+1

STA HEAD+1

LDY 0 ;INDEX = ZERO

PLA sNEW HEAD'S LINK IS OLD HEAD
STA (HEAD), Y

TXA .

INY .

STA . (HEAD),Y

. Remove an element from the head of the queue and set the Zero flag if no
element is available.

LDY #0 ;GET ADDRESS OF FIRST ELEMENT
LDA (HEAD) ,Y ;GET LESS SIGNIFICANT BYTE
STA PGZRO

INY

LDA (HEAD) ,Y ;GET MORE SIGNIFICANT BYTE

STA
ORA
BEQ
LDA
STA
DEY
LDA
STA
INY
DONE NOP

CHAPTER 1: GENERAL PROGRAMMING METHODS 43

" PGZRO+1
PGZRO ;ANY ELEMENTS IN QUEUE?
DONE ;NO, DONE (LINK = 0000)

(PGZRO) ,Y ;YES, MAKE NEXT ELEMENT NEW HEAD
(HEAD) ,Y

(PGZRO) , Y
(HEAD) ,Y
;CLEAR ZERO FLAG BY MAKING Y 1

Note that we can use the sequence

LDA

ORA

ADDR
ADDR+1

to test the 16-bit number in memory locations ADDR and ADDR+ 1. The Zero
flag is set only if both bytes are 0.

2. Stacks. Assume that we have a stack structure consisting of 8-bit elements.
The address of the next empty location is in addresses SPTR and SPTR+1 on
page 0. The lowest address that the stack can occupy is LOW and the highest

address is HIGH.

- If the stack overflows, clear the Carry flag and exit. Otherwise, store the
accumulator in the stack and increase the stack pointer by 1. Overflow means that
the stack has exceeded its area.

LDA
CMP
LDA
SBC
BCC
LDY
STA
INC
BNE
INC
EXIT NOP

#HIGHL :STACK POINTER GREATER THAN HIGH?
SPTR

$HIGHM

SPTR+1 .

EXIT ;YES, CLEAR CARRY AND EXIT (OVERFLOW)
#0 :NO STORE ACCUMULATOR IN STACK
(SPTR), Y v

SPTR ; INCREMENT STACK POINTER

EXIT

SPTR+1

- If the stack underflows, set the Carry flag and exit. Otherwise, decrease the
stack pointer by 1 and load the accumulator from the stack. Underflow means
that there is nothing left in the stack.

LDA
CMP
LbA
SBC
BCS
LDA
BNE
DEC
NOBOR DEC
LDY
LDA
EXIT NOP

#LOWL ;STACK POINTER AT OR BELOW LOW?
SPTR

$LOWM

SPTR+1

EXIT ;YES, SET CARRY AND EXIT (UNDERFLOW)
SPTR ;NO, DECREMENT STACK POINTER
NOBOR

SPTR+1

SPTR

#0 : LOAD ACCUMULATOR FROM STACK
(SPTR) ,Y

44 502 ASSEMBLY LANGUAGE SUBROUTINES

PARAMETER PASSING TECHNIQUES

The most common ways to pass parameters on the 6502 microprocessor are

1. In registers. Three 8-bit registers are available (A, X, and Y). This
approach is adequate in simple cases but it lacks generality and can handle only a
limited number of parameters. The programmer must remember the normal uses
of the registers in assigning parameters. In other words,

. The accumulator is the obvious place to put a single 8-bit parameter.

. Index register X is the obvious place to put an index, since it is the most
accessible and has the most instructions that use it for addressing. Index register
X is also used in preindexing (indexed indirect addressing). '

- Index register Y is used in postindexing (indirect indexed addressing).

This approach is reentrant as long as the interrupt service routines save and
restore all the registers.

2. In an assigned area of memory. The easiest way to implement this
approach is to place the starting address of the assigned area in two memory loca-
tions on page 0. The calling routine must store the parameters in memory and
load the starting address into the two locations on page 0 before transferring con-
trol to the subroutine. This approach is general and can handle any number of
parameters, but it requires a large amount of management. If you assign different
areas of memory for each call or each routine, you are essentially creating your
own stack. If you use a common area of memory, you lose reentrancy. In this
method, the programmer is responsible for assigning areas of memory, avoiding
interference between routines, and saving and restoring the pointers required to
resume routines after subroutine calls or interrupts. The extra memory locations
on page 0 must be treated like registers.

3. In program memory immediately following the subroutine call. If you use
this approach, you must remember the following:

- The starting address of the memory area minus 1 is at. the top of the stack.
That is, the starting address is the normal return address, which is 1 larger than
the address the 6502°s JSR instruction saves in the stack. You can move the start-
ing address to memory locations RETADR and RETADR +1 on page 0 with the
following sequence:

PLA :GET LSB OF RETURN ADDRESS
STA RETADR

PLA ;GET MSB OF RETURN ADDRESS
STA RETADR+1

INC RETADR ;ADD "1 TO RETURN ADDRESS
BNE DONE

INC " RETADR+1
DONE NOP :

CHAPTER 1: GENERAL PROGRAMMING METHODS 45

Now we can access the parameters through the indirect address. That is, you can
load the accumulator with the first parameter by using the sequence

LDY #0 ;INDEX = ZERO

LDA (RETADR) ,Y ;LOAD FIRST PARAMETER
An obvious alternative is to leave the return address unchanged and start the
index at 1. That is, we would have

PLA ;sGET LSB OF RETURN ADDRESS
STA "RETADR .

PLA ;GET MSB OF RETURN ADDRESS
STA RETADR+1 :

Now we could load the accumulator with the first parameter by using the
sequence
LDY #1 ;INDEX = 1
LDA (RETADR) ,Y ;LOAD FIRST PARAMETER
- All parameters must be fixed for a given call, since the program memory is
typically ROM. ’

- The subroutine must calculate the actual return address (the address of the
last byte in the parameter area) and place it on top of the stack before executing a
Return from Subroutine (RTS) instruction.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit
parameter. Show a main program that calls SUBR and contains the required
parameters. Also show the initial part of the subroutine that retrieves the
parameters, storing the 8-bit item in the accumulator and the 16-bit item in
memory locations PGZRO and PGZRO+ 1, and places the correct return address
at the top of the stack.

Subroutine call)
JSR SUBR ;EXECUTE SUBROUTINE

.BYTE PARS ;8-BIT PARAMETER
.WORD PARIlG6 ;16-BIT PARAMETER
... next instruction
Subroutine

SUBR PLA ;GET LSB OF PARAMETER ADDRESS
STA RETADR
PLA ;GET MSB OF PARAMETER ADDRESS
STA RETADR+1
LDY #1 ;ACCESS FIRST PARAMETER
LDA (RETADR) , Y ;GET FIRST PARAMETER
TAX
INY
LDA (RETADR) , Y ;ACCESS LSB OF 16-BIT PARAMETER
STA PGZRO .
INY

LDA (RETADR) ,Y ;GET MSB OF 16-BIT PARAMETER

46 6502 ASSEMBLY LANGUAGE SUBROUTINES

STA PGZRO+1
LDA RETADR ;CALCULATE ACTUAL RETURN ADDRESS
cLC
ADA #3 .
TAY
BCC STRMSB
INC RETADR+1

STRMSB LDA RETADR+1 ;PUT RETURN ADDRESS ON TOP OF STACK

PHA
TYA
PHA

The initial sequence pops the return address from the top of the stack (JSR saved
it there) and stores it in memory locations RETADR and RETADR +1. In fact,
the return address does not contain an instruction; instead, it contains the first
parameter. Remember that JSR actually saves the return address minus 1; that is
why we must start the index at 1 rather than at 0. Finally, adding 3 to the return
address and saving the sum in the stack lets a final RTS instruction transfer con-
trol back to the instruction following the parameters.

This approach allows parameters lists of any length. However, obtaining the
parameters from memory and adjusting the return address is awkward at best; it
becomes a longer and slower process as the number of parameters increases.

- 4. In the stack. If you use this approach, you must remember the following:

. JSR stores the return address at the top of the stack. The parameters that the
calling routine -placed in the stack begin at address 01ss + 3, where ss is the con-
tents of the stack pointer. The 16-bit return address occupies the top two loca-
tions and the stack pointer itself always refers to the next empty address, not the
last occupied one. Before the subroutine can obtain its parameters, it must
remove the return address from the stack and save it somewhere.

« The only way for the subroutine to determine the value of the stack pointer is
by using the instruction TSX. After TSX has been executed, you can access the
top of the stack by indexing with register X from the base address 0101 .. The
extra offset of 1 is necessary because the top of the stack is empty.

. The calling program must place the parameters in the stack before calling the
subroutine.

. Dynamically allocating space on the stack is difficult at best. If you wish to
reduce the stack pointer by NRESLT, two general approaches are

TSX " ;MOVE STACK POINTER TO A VIA X

TXA

SEC ; SUBTRACT NRESLT FROM POINTER

SBC #NRESLT :

TAX ;RETURN DIFFERENCE TO STACK POINTER

TXS

CHAPTER 1: GENERAL PROGRAMMING METHODS 47

or
LDX #NRESLT ;COUNT = NRESLT
PUSHB PHA sMOVE STACK POINTER DOWN 1
DEX
BNE PUSHB

Either approach leaves NRESLT empty locations at the top of the stack as shown
in Figure 1-5. Of course, if NRESLT is 1 or 2, simply executing PHA the
appropriate number of times will be much faster and shorter. The same
approaches can be used to provide stack locations for temporary storage.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit
parameter, and that it produces two 8-bit results. Show a call of SUBR, the
removal of the return address from the stack, and the cleaning of the stack after
the return. Figure 1-6 shows the appearance of the stack initially, after the
subroutine call, and at the end. If you always use the stack for parameters and
results, you will generally keep the parameters at the top of the stack in the proper
order. Then you will not have to save the parameters or assign space in the stack
for the results (they will replace some or all of the original parameters). You will,
however, have to assign space on the stack for temporary, storage to maintain
generality and reentrancy.

Calling program

TSX ;LEAVE ROOM ON STACK FOR RESULTS
TXA ;A GENERAL WAY TO ADJUST SP

CLC 1
ADC 42

TAX

TXS

LDA #PAR16H sMOVE 16-BIT PARAMETER TO STACK
PHA

LDA #PAR16L

PHA -

LDA #PARS iMOVE 8-BIT PARAMETER TO STACK
PHA

JSR SUBR ;EXECUTE SUBROUTINE

TSX ;CLEAN PARAMETERS FROM STACK

TXA

CLC

ADC #3

TAX .

TXS ;RESULT IS NOW AT TOP OF STACK

Subroutine

SUBR PLA ;REMOVE RETURN ADDRESS FROM STACK
STA RETADR
PLA
STA RETADR+1

A48 6502 ASSEMBLY LANGUAGE SUBROUTINES .

0lss —NRESLT

Empty space

for storing
results in the
Olss stack
Stack . Stack
Pointer Pointer

No values are placed in the locations.
The initial contents of the stack pointer are ss.

Figure 1-5: The Stack Before and After Assigning NRESLT
Empty Locations for Results

Initial state of Stack after Final state of
_ the stack execution of the stack
JSR SUBR

Oiss —7

LSB of return
address

MSB of return
address

8-bit parameter

LSB of 16-bit
parameter

MSB of 16-bit —
parameter Olss —2

Empty byte for
result #1 Result #1

Empty byte for !
Olss result #2 Result #2

Stack Stack Stack
Pointer Pointer Pointer

The initial contents of the stack pointer are ss.

Figure 1-6: The Effect of a Subroutine on the Stack

Y

CHAPTER 1: GENERAL PROGRAMMING METHODS 49

SIMPLE INPUT/OUTPUT

Simple input/output can be performed using any memory addresses and any
instructions that reference memory. The most common instructions are the
following:

* LDA (load accumulator) transfers eight bits of data from an input port to the
accumulator.

- STA (store accumulator) transfers eight bits of data from the accumulator to
an output port.

Other instructions can combine the input operation with arithmetic or logical
operations. Typical examples are the following:

* AND logically ANDs the contents of the accumulator with the data from an
_input port.

* BIT logically ANDs the contents of the accumulator with the data from an
input port but does not store the result anywhere. It does, however, load the
Negative flag with bit 7 of the input port and the Overflow flag with bit 6, regard-
less of the contents of the accumulator.

* CMP subtracts the data at an input port from the contents of the accumula-
tor, setting the flags but leaving the accumulator unchanged.

Instructions that operate on data in memory can also be used for input or out-
put. Since these instructions both read and write memory, their effect on input
and output ports may be difficult to determine. Remember, input ports cannot
generally be written, nor can output ports generally be read. The commonly used
instructions are the following:

* ASL shifts its data to the left, thus moving bit 7 to the Carry for possible
serial input.

* DEC decrements its data. Among other effects, 'this inverts bit 0.

* INC increments its data. Among other effects, this inverts bit 0.

- LSR shifts its data to the right, thus moving bit.0 to the Carry for possible
serial input. f

* ROR rotates its data to the right, thus moving the old Carry to bit 7 and mov-
ing bit 0 to the Carry.

* ROL rotates its data to the left, thus moving the old Carry to bit 0 and mov-
ing bit 7 to the Carry.

The effects of these instructions on an input port are typically similar to their
effects on a ROM location. The microprocessor can read the data, operate on it,
and set the flags, but it cannot store the result back into memory. The effects on

B0 6502 ASSEMBLY LANGUAGE SUBROUTINES

an output port are even stranger, unless the port is latched and buffered. If it is
not, the data that the processor reads is system-dependent and typically has no
connection with what was last stored there.

Examples

1. Perform an 8-bit input operation from the input port assigned to memory
address B00O, . :

LDA $B0O0O ;INPUT DATA

2. Perform an 8-bit output operation to the output port assigned to memory
address 3ASE . '

STA $3A5E ;OUTPUT DATA

3. Set the Zero flag if bit 5 of the input port assigned to memory address
75D0,, is 0.

LDA #%0010000U0 ;GET MASK
AND $75D0 ;SET FLAG IF BIT 5 IS ZERO

We can also use the sequence
LDA $#300100000 ;GET MASK

BIT $75D0 ;SET FLAG IF BIT 5 IS ZERO
If the bit position of interest is number 6, we can use the single instruction
BIT $75D0

to set the Qverflow flag (o its value.

4. Set the Zero flag if the data at the input port assngned to memory address
1700 is 1B,,.

LDA $S1B
CMP $1700

5. Load the Carry flag with the data from bit 7 of the input port a531gned to
memory address 33A5, .
ASL $33A5

Note that this instruction does not change the data in memory location 33A5|6
unless that location is latched and buffered. If, for example, there are eight simple
switches attached directly to the port, the instruction will surely have no effect on
whether the switches are open or closed.

6. Place a logic 1 in bit 0 of the output port assigned to memory address B070,,.

LDA $B0O70
ORA $200000001
STA SB0O70
If none of the other bits in address BO70,, are connected, we can use the sequence
SEC

ROL $BU70

CHAPTER 1: GENERAL PROGRAMMING METHODS B 1

If we know that bit 0 of address BO70,, is currently a logic 0, we can use the single
instruction
INC $B070

All of these alternatives will have strange effects if memory address B070 , can-
not be read. The first two will surely make bit 0 a logic 1, but their effects on the
other bits are uncertain. The outcome of the third alternative would be a total
mystery, since we would have no idea what is being incremented. We can avoid
the uncertainty by saving a copy of the data in RAM location TEMP. Now we can
operate on the copy using

LDA TEMP ;GET COPY OF OUTPUT DATA
ORA #200000001 ;SET BIT 0

STA $B070 ;OUTPUT NEW DATA

STA TEMP ;AND SAVE A COPY OF IT

LOGICAL AND
PHYSICAL DEVICES

One way to select 1/0 devices by number is to use an 1/0 device table. An I/0
device table assigns the actual I/0 addresses (physical devices) to the device num-
bers (logical devices) to which a program refers. Using this method, a program
written in a high-level language may refer to device number 2 for input and num-
ber 5 for output. For testing purposes, the operator may assign devices numbers 2
and 5 to be the input and output ports, respectively, of his or her terminal. For
normal stand-alone operation, the operator may assign device number 2 to be an
analog input unit and device number 5 the system printer. If the system is to be
operated by remote control, the operator may assign devices numbers 2 and 5 to
be communications units used for input and output.

One way to provide this distinction between logical and physical devices is to
use the 6502’s indexed indirect addressing or preindexing. This mode assumes
that the device table is located on page 0 and is accessed via an index in register X.
If we have a device number in memory location DEVNO, the following programs
can be used:

* Load the accumulator from the device number given by the contents of
memory location DEVNO.

LDA DEVNO ;GET DEVICE NUMBER

ASL A ;DOUBLE IT TO HANDLE DEVICE ADDRESSES
TAX

LDA (DEVTAB,X) ;GET DATA FROM DEVICE

- Store the accumulator in the device number given by the contents of
memory location DEVNO.

B2 6502 ASSEMBLY LANGUAGE SUBROUTINES

PHA ;SAVE THE DATA

LDA DEVNO ;GET DEVICE NUMBER

ASL A ;DOUBLE 1T TO HANDLE DEVICE ADDRESSES
TAX .

PLA

STA (DEVTAB,X) ;SEND DATA TO DEVICE

In both cases, we assume that the I/0 device table starts at address DEVTAB (on

page 0) and consists of 2-byte addresses. Note that the 6502 provides an appropri- -
ate addressing method, but does not produce any error messages if the pro-

grammer uses that method improperly by accessing odd addresses or by indexing

off the end of page 0 (the processor does provide automatic wraparound). In real

applications (see Chapter 10), the device table will probably contain the starting

addresses of 1/0 subroutines (drivers) rather than actual device addresses.

STATUS AND CONTROL

You can handle status and control signals like any other data. The only special
problem is that the processor may not be able to read output ports; in that case,
you must retain copies (in RAM) of the data sent to those ports.

Examples
1. Branch to address DEST if bit 3 of the input port assigned to memory
address A100 is 1.
LDA $A100 ;GET INPUT DATA
AND #300U010U0 ;MASK OFF BIT 3
BNE DEST
2 Branch to address DEST if bits 4, 5, and 6 of the input port assigned to
address STAT are 5 (101 binary).

LDA STAT ;GET STATUS
AND £%01110000 ;MASK OFF BITS 4, 5, AND 6
CMP $$01010000 ;IS STATUS FIELD 57
BEQ DEST ;YES, BRANCH
3. Set bit 5 of address CNTL to 1.
LDA CNTL ;:GET CURRENT DATA FROM PORT
ORA $3%00100000 ;SET BIT 5
STA CNTL ;RESTORE DATA TO PORT

If address CNTL cannot be fead properly, we can use a copy in memory address
TEMP.

LDAa TEMP ;GET CURRENT DATA FROM PORT
ORA #%00100000 ;SET BIT 5)
STA CNTL - ;RESTORE DATA TO PORT

STA TEMP ;UPDATE COPY OF DATA

1

CHAPTER 1: GENERAL PROGRAMMING METHODS 53

You must update the copy every time you change the data.
4. Set bits 2, 3, and 4 of address CNTL to 6 (110 binary).

LDA CNTL ;GET CURRENT DATA FROM PORT
AND #$11100011 ;CLEAR BITS 2, 3, AND 4
ORA $300011000 ;SET CONTROL FIELD TO 6
STA CNTL ;RESTORE DATA TO PORT

As in example 3, if address CNTL cannot be read properly, we can use a copy in
memory address TEMP.

LDA TEMP ;GET CURRENT DATA FROM PORT
AND #%11100011 ;CLEAR BITS 2, 3, AND 4
ORA #300011000 ;SET CONTROL FIELD TO 6

STA CNTL ;UPDATE PORT

STA TEMP ;UPDATE COPY OF DATA

Retaining copies of the data in memory (or using the values stored in a latched,
buffered output port) allows you to change part of the data without affecting other
parts that may have unrelated meanings. For example, you could change the state
of one indicator light (for example, a light that indicated local or remote opera-
tion) without affecting other indicator lights attached to the same port. You could
similarly change one control line (for example, a line that determined whether
motion was in the positive or negative X-direction) without affecting other con-
trol lines attached to the same port.

PERIPHERAL CHIPS

The major peripheral chips in 6502-based microcomputers are the 6520 and
6522 parallel interfaces (known as the Peripheral Interface Adapter or PIA and
the Versatile Interface Adapter or VIA, respectively), the 6551 and 6850 serial
interfaces (known as Asynchronous Communications Interface Adapters or
ACIAs), and the 6530 and 6532 multifunction devices (known as ROM-1/0-
timers or RAM-1/O-timers or ROM-RAM-1I/O-timers, abbreviated RIOT or
RRIOT and sometimes called combo chips). All of these devices can perform a
variety of functions, much like the microprocessor itself. Of course, peripheral
chips perform fewer different functions than processors and the range of func-
tions is limited. The idea behind programmable peripheral chips is that each con-
tains many useful circuits; the designer selects the ones he or she wants to use by
storing one or more selection codes in control registers, much as one selects a
particular circuit from a Designer’s Casebook by turning to a particular page. The
advantages of programmable chips are that a single board containing such devices
can handle many applications and changes, or, corrections can be made by chang-
ing selection codes rather than by redesigning circuit boards. The disadvantages

B4 6502 ASSEMBLY LANGUAGE SUBROUTINES

of programmable chips are the lack of standards and the difficulty of determining
how specific chips operate.

Chapter 10 contains typical initialization routines for the 6520, 6522, 6551,
6850, 6530, and 6532 devices. These devices are also discussed in detail in the
Osborne 4 and 8-Bit Microprocessor Handbook?. We will provide only a brief over-
view of the 6522 device here, since it is the most widely used. 6522 devices are
used, for example, in the Rockwell AIM-65, Synertek SYM-1, Apple, and other
popular microcomputers as well as in add-on 1/0O boards and other functions
available from many manufacturers.

6522 Parallel Interface
(Versatile Interface Adapter)

A VIA contains two 8-bit parallel 1/0 ports (A and B), four status and control
lines (CA1, CA2, CBl1, and CB2 — two for each of the two ports), two 16-bit
counter/timers (timer 1 and timer 2), an 8-bit shift register, and interrupt logic.
Each VIA occupies 16 memory addresses. The RS (register select) lines choose
the various internal registers as described in Table 1-12. The way that a VIA oper-
ates is determined by the values that the program stores in four registers.

. Data Direction Register A (DDRA) determines whether the pins on port A
are inputs (0s) or outputs (1s). A data direction register determines only the
direction in which traffic flows; you may compare it to a directional arrow that
indicates which way traffic can move on a highway lane or railroad track. The data
direction register does not affect what data flows or how often it changes; it only
affects the direction. Each pin in the I/0 port has a corresponding bit in the data
direction register, and thus, each pin can be selected individually as either an
input or an output. Of course, the most common choices are to make an entire 8-
bit I/O port input or outport by storing 0s or 1s in all eight bits of the data direc-
tion register. :

. Data Direction Register B (DDRB) similarly determines whether the pins in
port B are inputs or outputs.

. The Peripheral Control Register (PCR) determines how the handshaking
control lines (CA1, CB1, CA2, and CB2) operate. Figure 1-7 contains the bit
assignments for this register. We will discuss briefly the purposes of these bits
and their uses in common applications.

. The Auxiliary Control Register (ACR) determines whether the input data
ports are latched and how the timers and shift register operate. Figure 1-8 con-
tains the bit assignments for this register. We will also discuss briefly the purposes
of these bits and their uses in common applications.

CHAPTER 1: GENERAL PROGRAMMING METHODS 55

Table 1-12: Addressing the Internal Registers of the 6522 VIA

Label

Select Lines

Addressed Location

Lae] o - 3
wnln|lwaw|a
o | | x|
DEV 0jojotlo Output register for 1/0 Port B
DEV+1 olofo]1 Output register for I/0 Port A, with handshaking
DEV+2 ojof1]o 170 Port B Data Diréction register
DEV+3 0ofo | 1]1 1/0 Port A Data Direction register
DEV+4 011 0| 0 Read Timer 1 Counter low-order byte
Write to Timer 1 Latch low-order byte
DEV+5 011 0] 1 Read Timer 1 Counter high-order byte
Write to Timer 1 Latch high-order byte and
initiate count
DEV+6 011 110 Access Timer 1 Latch low-order byte
DEV+7 011 l/ -1 Access Timer 1 Latch high-order byte
DEV+38 110 0] 0 Read low-order byte of Timer 2 and reset
Counter interrupt
Write to low-order byte of Timer 2 but do not
reset interrupt
DEV+9 1]0 011 Access high-order byte of Timer 2, reset
Counter interrupt on write
DEV+A 1 {0 11 0 [Serial I/O Shift register
DEV+B 110 1 1 Auxiliary Control register
DEV+C 1 1 010 Peripheral Control register
DEV+D 1 1 0] 1 Interrupt Flag register
DEV+E 1 1 110 Interrupt Enable register
DEV+F 1 1 1 1 Output register for I/0 Port A, without handshaking

56 6502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 S 4 3 2 1 0 -s——Bit Number

EEEREEEREE
| r

0 Request interrupt on high-to-low }
transition of CA| On interrupt request set

1 Request interrupt on low-to-high s Interrupt Flag register bit 1
transition of CAl

000 CA2 input mode

Peripheral Control register '

)) Request interrupt on On interrupt
001 CA2 independent input mode | high-to-low CA?2 transition { request set
010 CA2input mode Request interrupt on Interrupt Flag
011 CA2 independent input mode | tow-to-high CA2 transition) register bit 0

100 CA2 output low on CPU read or write

101 CA2 output low pulse on CPU read or write
110 Output CA2 low

111 Quiput CA2 high

0 Reques! interrupt on high-to-low

transition of CBI ’ On interrupt request set
1 Request interrupt on low-to-high ’ Interrupt Flag register bit 4
transition of CB1

000 CB2 input mode |

. . S terr n n interrupl
001 CB2 independent input mode \ R‘eque tin cr. upt o . On interrup
T high-to-tow CB2 transition request set
010 CB2 input mode X .
Request interrupt on Interrupt Flag

011 CB2 independent input mode
100 CB2 output low on CPU wrile
101 CB2 outpui low pulse on CPU write
110 Output CB2 low
111 Qutput CB2 high

low-to-high CB2 transition) register bit 3

Figure 1-7: Bit Assignments for the 6522 VIA’s Peripheral Control Register

7 6 5 4 3 2 1 0 -—Bit Number

r] l I‘—l\ l I IJ<——Auiniary Control register

e —

0 Disable input latch on Port A
1 Enable input latich on Port A

0 Disable input latch on Port B

1 Enable input latch on Port B

000 Disable Shift register

001 Shift in at Counter 2 rate

010 Shift in at &2 clock rate

011 Shift in at external clock rate

100 Free-running output at Counter 2 rate
101 Shift out at Counter 2 rate

110 Shift-out at &2 clock rate

111 Shift out at external clock rate

0 Decrement Counter 2 on &2 clock, in one-shot mode
| Decrement Counter 2 on external pulses input via PB6
0 Disable output via PB7
) Enable output via PB7

Counter | controls

=0 One-shot mode
| Free-running mode

Figure 1-8: Bit Assignments for the 6522 VIA’s Auxiliary Control Register

CHAPTER 1: GENERAL PROGRAMMING METHODS 57

In order to initialize a VIA properly, we must know what its start-up state is.
Reset clears all the VIA registers, thus making all the data and control lines
inputs, disabling all latches interrupts, and other functions, and clearing all
status bits.

The data direction registers are easy to initialize. Typical routines are

- Make port A input.
LDA #0
STA DDRA
+ Make port B output.
LDA #%11111111
STA DDRB
* Make bits 0 through 3 of port A input, bits 4 through 7 output.

LDA $#5$11110000
STA DDRA

+ Make bit 0 of port B input, bits 1 through 7 output.

LDA #$11111110
STA DDRB
Bit 0 could, for example, be a serial input line.
The Peripheral Control Register is more difficult to initialize. We will briefly
discuss the purposes of the control lines before showing some examples.
Control lines CAl, CA2, CBIl, and CB2 are basically intended for use as
handshaking signals. In a handshake, the sender indicates the availability of data
by means of a transition on a serial line; the transition tells the receiver that new
data is available to it on the parallel lines. Common names for this serial line are
VALID DATA, DATA READY, and DATA AVAILABLE. In response to this
signal, the receiver must accept the data and indicate its acceptance by means of a
transition on another serial line. This transition tells the sender that the latest
parallel data has been accepted and that another transmission sequence can begin.
Common names for the other serial line are DATA ACCEPTED, PERIPHERAL
READY, BUFFER EMPTY, and DATA ACKNOWLEDGE.
Typical examples of complete sequences are

- Input from a keyboard. When the operator presses a key, the keyboard pro-

. duces a parallel code corresponding to the key and a transition on the DATA

READY or VALID DATA line. The computer must determine that the transi-

tion has occurred, read the data, and produce a transition on the DATA
ACCEPTED line to indicate that the data has been read.

* Output to a printer. The printer indicates to the computer that it is ready by
means of a transition on a BUFFER EMPTY or PERIPHERAL READY line.
Note that PERIPHERAL READY is simply the inverse of DATA ACCEPTED,
since the peripheral obviously cannot be ready as long as it has not accepted the

58 6502 ASSEMBLY LANGUAGE SUBROUTINES

latest data. The computer must determine that the printer is ready, send the data,
and produce a transition on the DATA READY line to indicate that new data is
available. Of course, input and output are in some sense mirror images. In the
input case, the peripheral is the sender and the computer is the receiver; in the
output case, the computer is the sender and the peripheral is the receiver.

Thus, a chip intended for handshaking functions must provide the following
functions:

« It must recognize the appropriate transitions on the DATA READY or PE-
RIPHERAL READY lines.

- It must provide an indication that the transition has occurred in a form that is
easy for the computer to handle.

. It must allow for the production of the response — that is, for the computer
to indicate DATA ACCEPTED to an input peripheral or DATA READY to an
output peripheral.

There are some obvious variations that the handshaking chip should allow for,
including the following:

- The active transition may be either a high-to-low edge (a trailing edge) or a
low-to-high edge (a leading edge). If the chip does not allow either one, we will
need extra inverter gates in some situations, since both polarities are common.

"« The response may require either a high-to-low edge or a low-to-high edge. In
fact, it may require either a brief pulse or a long signal that lasts until the periph-
eral begins its next operation.

Experience has shown that the handshaking chip can provide still more conve-
nience, at virtually no cost, in the following ways:

- It can latch the transitions on the DATA READY or PERIPHERAL
READY lines, so that they are held until the computer is ready for them. The
computer need not monitor the status lines continuously to avoid missing a tran-
sition.

. It can clear the status latches automatically when an input port is read or an
output port is written, thus preparing them for the next operation.

- It can produce the response automatically when an input port is read or an
output port is written, thus eliminating the need for additional instructions. This
option is known as an automatic mode. The problem with any automatic mode, no
matter how flexible the designers make it, is that it will never satisfy all applica-
tions. Thus, most chips also provide a mode in which the program retains control
over the response; this mode is called a manual mode.

- In cases where the peripherals are simple switches or lights and do not need

CHAPTER 1: GENERAL PROGRAMMING METHODS 59

any status or control signals, the chip should allow independent operation of the
status lines. The designer can then use these lines (which would otherwise be
wasted) for such purposes as threshold detection, zero-crossing detection, or
clock inputs. In such cases, the designer wants the status and control signals to be
entirely independent of the operations on the parallel port. We should not have
any automatic clearing of latches or sending of responses. This is known as an
independent mode.

The 6522 peripheral control register allows the programmer to provide any of
these functions. Bits 0 through 3 govern the operation of port B and its control
signals; bits 4 through 7 govern the operation of port A and its control signals.
The status indicators are in the Interrupt flag register (see Figure 1-9). We may
characterize the bits in the control register as follows:

- Bit 0 (for port A) and bit 4 (for port B) determine whether the active transi-
tion on control line 1 is high-to-low (0) or low-to-high (1). If control line 2 is an
extra input, bit 2 (for port A) and bit 6 (for port B) has a similar function.

- If control line 2 is an extra input, bit 1 (for port A) and bit 5 (for port B)
determine whether it operates independently of the parallel data port. This bit is 0
for normal handshaking and 1 for independent operation.

- Bit 3 (for port A) and bit 7 (for port B) determine whether control line 2 is an
extra input line (0) or an output response (1).

» If control line 2 is an output response, bit 2 (for port A) and bit 6 (for port B)
determine whether it operates in an automatic mode (0) or a manual mode (1).

* If control line 2 is being operated in the automatic mode, bit 1 (for port A)
and bit 5 (for port B) determine whether the response lasts for one clock cycle (1)
or until the peripheral produces another active transition on control line 1 (0).

+ If control line 2 is being operated in the manual mode, bit 1 (for port A) and
bit 5 (for port B) determine its level.

Some typical examples are

* The peripheral indicates DATA READY or PERIPHERAL READY with a
high-to-low transition on control line 1. No response is necessary.

In the 4 bits controlling a particular port, the only requirement is that bit 0
must be 0 to allow recognition of a high-to-low transition on control line 1. The
other bits are arbitrary, although our preference is to clear unused bits as a stan-
dard convention. Thus, the bits would be 0000.

+ The peripheral indicates DATA READY or PERIPHERAL READY with a
low-to-high transition on control line 1. No response is necessary. Bit 0 must be
set to 1; the other bits are arbitrary. Bit 0 determines which edge the VIA recog-
izes. '

60 6502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 S 4 3 2 1 0 -e——Bit Number

IRQ| T1 | T2 | cB1|CB2| SR [CAl|CA2 [#——Interrupt Flag register
Bit
Number Set by Cleared by
0 Active transition of the signal Reading or writing the A Port Output
on the CA2 pin. register (ORA) using address 0001.
1 Active transition of the signal | Reading or writing the A Port Output
on the CAl pin. register (ORA) using address 0001.
2 Completion of eight shifts. Reading or writing the Shift ’
register.
Active transition of the signal Reading or writing the B Port
3 on the CB2 pin. Output register.
4 Active transition of the signal Reading or writing the B Port
on the CBI pin. ' Output register.
5 Time-out of Timer 2. Reading T2 low-order counter or
writing T2 high-order counter.
Time-out of Timer 1. Reading T1 low-order counter or
6 writing T1 high-order latch.
7 Active and enabled interrupt Action which clears interrupt
condition. condition.
Bits 0, 1, 3, and 4 are the 1/0 handshake signals. Bit 7 (IRQ) is 1 if any of the
interrupts is both active and enabled.

Figure 1-9: The 6522 VIA’s Interrupt Flag Register

- The peripheral indicates DATA READY or PERIPHERAL READY with a
high-to-low transition on control line 1. The port must respond by producing a
pulse on control line 2 that lasts one clock cycle after the processor reads the
input or writes the output.

The required 4-bit sequence is

Bit 3 = 1 to make control line 2 an output
Bit 2 = 0 to operate control line 2 in the automatic mode.

The port therefore produces the response without processor intervention.

CHAPTER 1: GENERAL PROGRAMMING METHODS 61

Bit 1 = 1 to make the response last one clock cycle.
Bit 0 = 0 to recognize a high-to-low transition on control line 1.

+ The peripheral indicates DATA READY or PERIPHERAL READY with a
low-to-high transition on control line 1. The port must respond by bringing con-
trol line 2 low until the peripheral becomes ready again.

The required 4-bit sequence is

Bit 3 = 1 to make control line 2 an output.

Bit 2 = 0 to operate control line 2 in the automatic mode.

Bit 1 = 0 to make the response last until the peripheral becomes ready again.

Bit 0 = 1 to recognize a low-to-high transition on control line 1 as the ready signal.

» The peripheral indicates DATA READY or PERIPHERAL READY with a
low-to-high transition on control line 1. The processor must respond under pro-
gram control.

The required 4-bit sequence is

Bit 3 = 1 to make control line 2 an output.

Bit 2 = 1 to operate control line 2 in the manual mode.

Bit 1 is the initial state for control line.

Bit 0 = 1 to recognize a low-to-high transition on control line 1 as the ready signal.

The following sequences can be used to produce the response

Make CA2 a logic 1:
LDA VIAPCR ;READ THE PERIPHERAL REGISTER
ORA #%00000010 ;SET CONTROL LINE 2 TO 1
STA VIAPCR

Make CA2 a logic 0:

LDA VIAPCR sREAD THE PERIPHERAL REGISTER
AND #%11111101 ;SET CONTROL LINE 2 TO 0
STA VIAPCR

Make CB2 a logic 1:
LDA VIAPCR +READ THE PERIPHERAL REGISTER
ORA #300100000 ;SET CONTROL LINE 2 TO 1
STA VIAPCR

Make CB2 a logic O0: :
LDA VIAPCR sREAD THE PERIPHERAL REGISTER
AND #211011111 ;SET CONTROL LINE 2 TO 0
STA VIAPCR

These sequences do not depend on the contents of the peripheral control register,
since they do not change any of the bits except the one that controls the response.

Tables 1-13 and 1-14 summarize the operating modes for control lines CA2
and CB2. Note that the automatic output modes differ slightly in that port A pro-
duces a response after either read or write operations, whereas port B produces a
response only after write operations.

62 6502 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-13: Operating Modes for Control Line CA2 of a 6522 VIA

PCR3 | PCR2 | PCR1 " Mode

Input Mode — Set CA2 Interrupt flag (IFR0) on a negative transition
0 0 0 of the input signal. Clear IFRO on a read or write of the Peripheral A
Output register.

Independent Interrupt Input Mode — Set IFRO on a negative transition
0 0 1 of the CA2input signal. Reading or writing ORA does not clear the
CA2 Interrupt flag.

Input Mode — Set CA2 Interrupt flag on a positive transition of the
0 1 0 CA2 input signal. Clear IFRO with a read or write of the Peripheral A
Output register.

Independent Interrupt Input Mode — Set IFRO on a positive transition
0 1 1 of the CA2 input signal. Reading or writing OR A does not clear the
CA2 Interrupt flag.

Handshake Output Mode — Set CA2 output low on a read or write
1 0 0 of the Peripheral A Output register. Reset CA2 high with an attive
transition on CAl.

Pulse Output Mode — CA2 goes low for one cycle following a read or
write of the Peripheral A Qutput register.

1 1 0 Manual Output Mode — 'i'he CA2 output is held low in this mode.

1 1 1 Manual Output Mode — The CA2 output is held high in this mode.

The auxiliary control register is less important than the peripheral control
register. Its bits have the following functions (see Figure 1-8):

- Bits 0 and 1, if set, cause the VIA to latch the input data on port A (bit 0) or
port B (bit 1) when an active transition occurs on control line 1. This option
allows for the case in which the input peripheral provides valid data only briefly,
and the data must be saved until the processor has time to handle it.

- Bits 2, 3, and 4 control the operations of the seldom-used shift register. This
register provides a simple serial 1/0 capability, but most designers prefer either to
use the serial 1/0 chips such as the 6551 or 6850 or to provide the entire serial
interface in software. ‘

- Bit 5 determines whe;her timer 2 generates a single time interval (the so-
called one-shot mode) or counts pulses on line PB6 (pulse-counting mode).

. Bit 6 determines whether timer 1 generates one time interval (0) or operates
continuously (1), reloading its counters from the latches after each interval
elapses. '

CHAPTER 1: GENERAL PROGRAMMING METHODS 63

a

Table 1-14: Operating Modes for Control Line CB2 of a 6522 VIA

PCR7 | PCR6| PCRS Mode

Interrupt Input Mode — Set CB2 Interrupt flag (IFR3) on a negative
0 0 0 transition of the CB2 input signal. Clear IFR3 on a read or write of the
Peripheral B Output register. -

Independent Interrupt Input Mode — Set IFR3 on a negative transition
0 0 | of the CB2 input signal. Reading or writing ORB does not clear the
Interrupt flag.

Input Mode — Set CB2 Interrupt flag on a positive transition
0 1 0 of the CB2 input signal. Clear the CB2 Interrupt flag on a read or
write of ORB.

Independent Input Mode — Set IFR3 on a positive trénsilion of the
0 1 1 -CB2input signal. Reading or writing ORB does not clear the CB2
Interrupt flag.

Handshake Output Mode — Set CB2 low on a write ORB operation.
1 0 0 Reset CB2 high on an active transition of the
CBI input signal.

1 0 T Pulse Output Mode — Set CB2 low for 6ne cycle following a write ORB
operation.

1 1 0 Manual Output Mode — The CB2 output is held low in this mode.

1 1 | Manual Output Mode — The CB2 output is held high in this mode.

» Bit 7 determines whether timer 1 generates output pulses on PB7 (a logic 1
generates pulses).

The uses of most of these functions are straightforward. They are not as com-
mon as the handshaking functions governed by the peripheral control register.

You can also operate a 6522 VIA in an interrupt-driven mode. Interrupts are
enabled or disabled by setting bits in the interrupt enable register (see Figures 1-
10 and 1-11) with bit 7 (the enable/disable flag) set (for enabling) or cleared (for
disabling). Interrupts can be recognized by examining the interrupt flag register
(see Figure 1-9). Table 1-15 summarizes the setting and clearing (resetting) of
interrupt flags on the 6522 VIA.

64 5502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 5 4 3 2 1 0 -=—BitNumber

le——— Interrupt Flag register

Le——— Interrupt Enable register

Active transition of CA2

Active transition of CAl

Shift register eighth shift

Active transition of CB2

Active transition of CB1

Interval Timer 2 timeout

Interval Timer 1 timeout

Enable/disable specification (1 = enable, 0 = disable)

Any active interrupt request

The Interrupt Flag register identifies those interrupts which are active.
A 1 in any bit position indicates an active interrupt, whereas a 0 indicates
an inactive interrupt. ’

Figure 1-10: The 6522 VIA’s Interrupt Flag and Interrupt Enable Registers

.

7 6 S 4 3 2 1 0 -=—BitNumber

rl—l 1 | O.I 1 l 0 I 0 l 0 l (ﬂ‘——lmerrupt Enable Register

3

Bit 4, active transition of CB1

Bit 6, Interval Timer 1 timeout

Enable specified

You can selectively enable or disable individual interrupts via the Interrupt

Enable register. You enable individual interrupts by writing to the Interrupt

Enable register with a 1 in bit 7. Thus you could enable “‘time out for Timer 1™
and *‘active transitions of signal CB1”’ by storing DO0,¢ in the Interrupt Enable register:

Figure 1-11: A Typical Enabling Operation on the
6522 VIA’s Interrupt Enable Register

CHAPTER 1: GENERAL PROGRAMMING METHODS 65

Table 1-15: A Summary of Conditions for Setting and
Resetting Interrupt Flags in the 6522 VIA

Set by Cleared by

6 Timeout of Timer 1 Reading Timer 1 Low-Order
Counter or writing T1 High-Order Laich

5 Timeout of Timer 2 Reading Timer 2 Low-Order Counter
or writing T2 High-Order Counter

4 Active transition of the signal on CBI Reading from or writing to 170 Port B
3 Active transition of the Reading from or writing to
signal on CB2 (input mode) 170 Port B in input mode only
2 Completion of eight shifts Reading or writing the Shift register
1 Active transition of the signal on CAl Reading from or writing to

170 Port A using address 0001,

0 Active transition of the Reading from or writing to 170 Port A
signal on CA2 (input mode) Output register (ORA) using address
0001, in input mode only

WRITING INTERRUPT- DRIVEN CODE

The 6502 microprocessor responds to an interrupt (either a nonmaskable
interrupt, a maskable interrupt that is enabled, or a BRK instruction) as follows:

* By saving the program counter (more significant byte first) and the status
register in the stack in the order shown in Figure 1-12. Note that the status
register ends up on top of the program counter; the sequence PHP, JSR would
produce the opposite order. The program counter value here is the address of the
next instruction; there is no offset of 1 as there is with JSR.

» By disabling the maskable interrupt by setting the I flag in the status register.

- By fetching a destination address from a specified pair of memory addresses
(see Table 1-16) and placing that destination in the program counter.

Thus, the programmer should consider the following guidelines when writing
interrupt-driven code for the 6502:

+ The accumulator and index registers must be saved and restored explicitly if
the service routine changes them. Only the status register is saved automatically.

66 6502 ASSEMBLY LANGUAGE SUBROUTINES

Before After

Olss —4 Olss —4
Olss —3 Olss —3 te——— Stack
Olss —2 olss —2| pp Pointer
Olss —1 Olss —1} PCL

Olss pe— Stack 0lss| PCH
Olss + 1 Pointer o165 + 1
Olss + 2 ' 0lss + 2

Stack Stack

ss = Original contents of Stack Pointer

pp = Original contents of Status (P) register

PCH = Original contents of 8 higher order bits of Program Counter
PCL = Original contents of 8 lower order bits of Program Counter

Figure 1-12: The 6502 Microprocessor’s Respohse to an Interrupt

The service routine must save the accumulator before it saves the index registers,
since it can only transfer an index register to the stack via the accumulator. Typi-
cal saving and restoring sequences are

PHA ;SAVE ACCUMULATOR IN STACK

TXA 'SAVE INDEX REGISTER X

PHA

TYA ;SAVE INDEX REGISTER Y

PHA

PLA ;RESTORE INDEX REGISTER Y

TAY

PLA ;RESTORE INDEX REGISTER X

TAX

PLA ;RESTORE ACCUMULATOR FROM STACK

The order of the index registers does not matter, as long as the saving and restor-
ing orders are opposites.

- The interrupt need not be reenabled explicitly, since the RTI (Return from
Interrupt) instruction restores the old status register as part of its execution. This
restores the original state of the Interrupt Disable flag. If you wish to return with
interrupts disabled, you can set the Interrupt Disable flag in the stack with the

sequence
PLA ;GET STATUS REGISTER
ORA $#%00000100 ;DISABLE INTERRUPT IN STACK

PHA ";PUT STATUS REGISTER BACK IN STACK

CHAPTER 1: GENERAL PROGRAMMING METHODS 67

Table 1-16: Interrupt Vectors for the 6502 Microprocessor.

Source " Address Used (Hexadecimal)
Interrupt Request (TRQ) and BRK Instruction FFFE and FFFF
Reset (RESET) FFFC and FFFD
Nonmaskable Interrupt (NMT) FFFA and FFFB

The addresses are stored in the usual 6502 fashion with the less significant byte
at the lower address.

Note the convenience here of having the status register at the top, rather than
underneath the return address.

- If you have code that the processor must execute with interrupts disabled,
you can use SEI (Set Interrupt Disable) to disable maskable interrupts and CLI
(Clear Interrupt Disable) to enable them afterward. If the section of code could
be entered with interrupts either disabled or enabled, you must be sure to restore
the original state of the Interrupt Disable flag. That is, you must save and restore
the status register as follows:

PHP ;SAVE OLD INTERRUPT DISABLE
SEI ;DISABLE INTERRUPTS

- CODE THAT MUST BE EXECUTED WITH-INTERRUPTS D1SABLED
PLP sRESTORE OLD INTERRUPT DISABLE

The alternative (automatically reenabling the interrupts at the end) would cause a
problem if the section-were entered with the interrupts already disabled.

+ If you want to allow the user to select the actual starting address of the ser-
vice routine, place an indirect jump at the vectored address. That is, the routine
starting at the vectored address is simply

JMP (USRINT) ;GO TO USER-SPECIFIED ADDRESS

This procedure increases the interrupt response time by the execution time of an
indirect jump (five clock cycles).

* You must remember to save and restore incidental information that is essen-
tial for the proper execution of the interrupted program. Such incidental informa-
tion may include memory locations on page 0, priority registers (particularly if
they are write-only), and other status.

- To achieve general reentrancy, you must use the stack for all temporary
storage beyond that provided by the registers. As we noted in the discussion of

68 6502 ASSEMBLY LANGUAGE SUBROUTINES

parameter passing, you can assign space on the stack (NPARAM bytes) with the
sequence

TSX ;MOVE S OVER TO A

TXA

SEC ;ASSIGN NPARAM EMPTY BYTES
SBC #NPARAM ;A GENERAL WAY TO ADJUST SP
TAX

TXS

Later, you can remove the temporary storage area with the sequence

TSX ;MOVE S OVER TO A
TXA
CLC
ADC $NPARAM ;REMOVE NPARAM EMPTY BYTES
TAX »
TXS
If NPARAM is only 1 or 2, you can replace these sequences with the appropriate

number of push and pull instructions in which the data is ignored.

. The service routine should initialize the Decimal Mode flag with either CLD
or SED if it uses ADC or SBC instructions. The old value of that flag is saved and
restored automatically as part of the status register, but the service routine should
not assume a particular value on entry.

MAKING PROGRAMS
RUN FASTER

- In general, you can make a program run substantially faster by first determin-
ing where it is spending its time. This requires that you determine which loops
(other than delay routines) the processor is executing most often. Reducing the
execution time of a frequently executed.loop will have a major effect because of
the multiplying factor. It is thus critical to determine how often instructions are
being executed and to work on loops in the order of their frequency of execution.

Once you have determined which loops the processor executes most fre-
quently, you can reduce their execution time with the following techniques:

- Eliminate redundant operations. These may include a constant that is being
added during each iteration or a special case that is being tested for repeatedly. It
may also include a constant value or a memory address that is being fetched each
time rather than being stored in a register or used indirectly.

. Use page 0 for temporary data storage whenever possible.

- Reorganize the loop to reduce the number of jump instructions. You can
often eliminate branches by changing the initial conditions, reversing the order of

CHAPTER 1: GENERAL PROGRAMMING METHODS 69

operations, or combining operations. In particular, you may find it helpful to start
everything back one step, thus making the first iteration the same as all the
others. Reversing the order of operations can be helpful if numerical comparisons
are involved, since the equality case may not have to be handled separately.
Reorganization may also allow you to combine condition checking inside the loop
with the overall loop control. '

+ Work backward through arrays rather than forward. This allows you to count
the index register down to 0 and use the setting of the Zero flag as an exit condi-
tion. No explicit comparison is then necessary. Note that you will have to subtract
1 from the base addresses, since 1 is the smallest index that is actually used.

* Increment 16-bit counters and indirect addresses rather than decrementing
them. 16-bit numbers-are easy to increment, since you can tell if a carry has
occurred by checking the less significant byte for 0 afterward. In the case of a
decrement, you must check for O first.

* Use in-line code rather than subroutines. This will save at least a JSR instruc-
tion and an RTS instruction.

- Watch the special uses of the index registers to avoid having to move data
between them. The only register that can be used in indirect indexed addressing
is register Y; the only register that can be used in indexed indirect addressing or
in loading and storing the stack pointer is register X.

- Use the instructions ASL, DEC, INC, LSR, ROL, and ROR to operate
directly on data in memory without moving it to a register.

+ Use the BIT instruction to test bits 6 or 7 of a memory location without load-
ing the accumulator.

» Use the CPX and CPY instructions to perform comparisons without using
the accumulator.

A general way to reduce execution time is to replace long sequences of instruc-
tions with tables. A single table lookup can perform the same operation as a
sequence of instructions if there are no special exits or program logic involved.
The cost is extra memory, but that may be Justified if the memory is readily
available. If enough memory is available, a lookup table may be a reasonable
approach even if many of its entries are repetitive — even if many inputs produce
the same output. In addition to its speed, table lookup is easy to program, easy to
change, and highly flexible.

70 6502 ASSEMBLY LANGUAGE SUBROUTINES

MAKING PROGRAMS USE
LESS MEMORY?

You can make a program use significantly less memory only by identifying
common sequences of instructions and replacing those sequences with
subroutine calls. The result is a single copy of each sequence. The more instruc-
tions you can place in subroutines, the more memory you save. The drawbacks of
this approach are that JSR and RTS themselves require memory and take time to
execute, and that the subroutines are typically not very general and may be
difficult to understand or use. Some sequences of instructions may even be
implemented as subroutines in a monitor or in other systems programs that are
always resident. Then you can replace those sequences with calls to the systems
program as long as the return is handled properly.

Some of the methods that reduce execution time also reduce memory usage.
In particular, using page 0, reorganizing loops, working backward through arrays,
incrementing 16-bit quantities, operating directly on memory, and using special
instructions such as CPX, CPY, and BIT reduce both execution time. and
memory usage. Of course, using in-line code rather than loops and subroutines
reduces execution time but increases memory usage. .

Lookup tables generally use extra memory but save execution time. Some
ways that you can reduce their memory requirements are by eliminating inter-
mediate values and interpolating the results ! eliminating redundant values
with special tests, and reducing the range of input values. Often you will find that
a few prior tests or restrictions will greatly reduce the size of the required table.

REFERENCES

1. Weller, W.I., Practical Microcomputer Programming: The 6502, Northern
Technology Books, Evanston, Iil., 1980.

2. Fischer, W.P., “‘Microprocessor Assembly Language Draft Standard,”
IEEE Computer, December 1979, pp. 96-109. Further discussions of the standard
appear on pp. 79-80 of IEEE Computer, April 1980, and on pp. 8-9 of IEEE Com-
puter, May 1981. See also Duncan, F.G., “‘Level-Independent Notation for
Microcomputer Programs,” IEEE Micro, May 1981, pp. 47-56.

3. Osborne, A. An Introduction to Microcomputers: Volume 1 — Basic Concepts,
2nd ed., Berkeley: Osborne/McGraw-Hill, 1980. ‘

4. Tbid.

CHAPTER 1: GENERAL PROGRAMMING METHODS 7 1

5. Shankar, K.S., ““Data Structures, Types, and Abstractions,”” IEEE Com-
puter, April 1980, pp. 67-77.

6. Ibid.

7. Osborne, A. and G. Kane, 4 and 8-Bit Microprocessor Handbook, Berkeley:
Osborne/McGraw-Hill, 1981, pp. 9-55 to 9-61 (6850 ACIA), Chapter 10 (6500
processors and associated chips).

8. Schember, K.A. and J.R. Rumsey, ‘‘Minimal Storage Sorting and Search-
ing Techniques for RAM Applications,’” Computer, June 1977, pp. 92-100.

9. Seim, T.A., “*‘Numerical Interpolation for Microprocessor-Based Systems,”’
Computer Design, February 1978, pp. 111-16.

10. Abramovich, A. and T.R. Crawford, ‘‘An Interpolating Algorithm for
Control Applications on Microprocessors,’’ Proceedings of the 1978 Conference
on Industrial Applications of Microprocessors, Philadelphia, Penn., pp. 195-201
(proceedings available from IEEE or IEEE Computer Society).

Two hobby magazines run many articles on 6502 assembly language program-
ming; they are Compute (P.O. Box 5406, Greensboro, NC 27403) and Micro
(P.O. Box 6502, Chelmsford MA 01824).

Chapter 2 Implementing
Additional Instructions
And Addressing Modes

This chapter shows how to implement instructions and addressing modes that
are not included in the 6502’s instruction set. Of course, no instruction set can
ever include all possible combinations. Designers must make choices based on
how many operation codes are available, how easily an additional combination
could be implemented, and how often it would be used. A description of addi-
tional instructions and addressing modes does not imply that the basic instruction
set is incomplete or poorly designed.

We concentrate our attention on additional instructions and addressing modes
that are

- Obvious parallels to those included in the instruction set

- Described in the draft Microprocessor Assembly Language Standard (IEEE
Task P694)

+ Discussed in Volume 1 of An Introduction to Microcomputers’

* Implemented on other microprocessors, especially ones that are closely
related or partly compatible.?.3

This chapter should be of particular interest to those who are familiar with the
assembly languages of other computers.

INSTRUCTION SET EXTENSIONS

In describing extensions to the instruction set, we follow the organization sug-
gested in the draft standard for IEEE Task P694.¢ We divide instructions into the
following.groups (listed in the order in which they are discussed): arithmetic,
logical, data transfer, branch, skip, subroutine call, subroutine return, and
miscellaneous. Within each type of instruction, we discuss operand types in the

73

74 6502 ASSEMBLY LANGUAGE SUBROUTINES

following order: byte (8-bit), word (16-bit), decimal, bit, nibble or digit, and
multiple. In describing addressing modes, we use the following order: direct,
indirect, immediate, indexed, register, autopreincrement, autopostincrement,
autopredecrement, autopostdecrement, indirect preindexed (also called prein-
dexed or indexed indirect), and indirect postindexed (also called postindexed or
indirect indexed).

ARITHMETIC INSTRUCTIONS

In this group, we consider addition, addition with carry, subtraction, subtrac-
tion in reverse, subtraction with carry (borrow), increment, decrement, multi-
plication, division, comparison, two’s complement (negate), and extension.
Instructions that do not obviously fall into a particular category are repeated for
convenience.

Addition Instructions
(Without Carry)

1. Add memory location ADDR to accumulator.

CLC ;CLEAR CARRY
ADC ADDR ;(A) = (A) + (ADDR)

The same approach works for all addressing modes.
2. Add VALUE to accumulator.

CLC ;CLEAR CARRY
ADC $VALUE ; (A) = (A) + VALUE

3. Add Carry to accumulator.
ADC $0 ;(A) = (A) + 0 + CARRY

4. Decimal add memory location ADDR to accumulator.

SED - ;ENTER DECIMAL MODE

CLC ;CLEAR CARRY

ADC ADDR : (A) = (A) + (ADDR) IN DECIMAL
CLD ; LEAVE DECIMAL MODE

A more general approach restores the original value of the D flag; that is,

PHP ;SAVE OLD D FLAG

SED ;ENTER DECIMAL MODE

CLC ;CLEAR CARRY

ADC ADDR ; (&) = (A) + (ADDR) IN DECIMAL

PLP ;RESTORE OLD D FLAG

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 75

Note that restoring the status register destroys the carry from the addition.
5. Decimal add VALUE to accumulator.

SED ;ENTER DECIMAL MODE

CLC. ;CLEAR CARRY

ADC #VALUE ;(A) = (A) + VALUE IN DECIMAL
CLD ;LEAVE DECIMAL MODE

6. Decimal add Carry to accumulator.

SED ;ENTER DECIMAL MODE
ADC #0 ; (A) = (A) + CARRY IN DECIMAL
CLD ;LEAVE DECIMAL MODE

7. Add index register to accumulator (using memory location ZPAGE).

STX ZPAGE ;SAVE INDEX REGISTER ON PAGE ZERO
CLC ;CLEAR CARRY
ADC ZPAGE i(A) = (A) + (X)

This approach works for index register Y also.

8. Add the contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1) to memory locations SUM and SUM+1 (MSB in SUM +1).

CLC ;CLEAR CARRY

LDA SUM

ADC ADDR ;ADD LSB'S

STA SUM

LDA SUM+1 ;ADD MSB'S WITH CARRY
ADC ADDR+1 ’

STA = SUM+]

9. Add 16-bit number VAL16 (VAL16M more significant byte, VAL16L less
significant byte) to memory locations SUM and SUM+1 (MSB in SUM +1).

CLC ;CLEAR CARRY

LDA SUM 7ADD LSB'S WITHOUT CARRY
ADC #VAL1l6L

STA SUM .

LDA SUM+1 ;ADD MSB'S WITH CARRY
ADC #VALl6

STA SUM+1

Addition Instructions
(With Carry)

1. Add Carry to accumulator
ADC #0 ; (A) = (A) + CARRY

76 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Decimal add VALUE to accumulator with Carry.

SED ;ENTER DECIMAL MODE
ADC #VALUE ;s (A) = (A) + VALUE + CARRY IN DECIMAL
CLD ; LEAVE DECIMAL MODE

3. Decimal add memory location ADDR to accumulator with Carry.

SED ;ENTER DECIMAL MODE
ADC ADDR ; (A) = (A) + (ADDR) + CARRY IN DECIMAL
CLD ;LEAVE DECIMAL MODE

4. Add the contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1) to memory locations SUM and SUM+1 (MSB in SUM+1) with
Carry.

LDA SUM ;ADD LSB'S WITH CARRY
ADC ADDR

STA SUM

LDA SUM+1 ;ADD MSB'S WITH CARRY
ADC ADDR+1

STA SUM+1

5. Add 16-bit number VAL16 (VAL16M more significant byte, VAL16L less
significant byte) to memory locations SUM and SUM+1 (MSB in SUM + 1) with
Carry.

LDA SUM ;ADD LSB'S WITH CARRY
ADC VAL16L)

STA SUM

LDA ~ SUM+l ;ADD MSB'S WITH CARRY

ADC ADDR+1
STA SUM+1

Subtraction Instructions
(Without Borrow)

1. Subtract memory location ADDR from accumulator.

SEC ;SET INVERTED BORROW
SBC ADDR i (p) = (A) - (ADDR)

The Carry flag acts as an inverted borrow, so it must be set to 1 if its value is to
have no effect on the subtraction.

2. Subtract VALUE from accumﬁlalor.

SEC ;SET INVERTED BORROW
SBC $VALUE ;1 (A) = (A) - VALUE

3. Subtract inverse of borrow from accumulator.

SBC $#0 ; (A) = (A) - (1- CARRY)

) '

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 77

The result is (A) —1 if Carry is 0 and (A) if Carry is 1.
4. Decimal subtract memory location ADDR from accumulator.

SED sENTER DECIMAL MODE
SEC ;SET INVERTED BORROW
SBC ADDR ; (A) = (A) - (ADDR) IN DECIMAL
CLD ; LEAVE DECIMAL MODE

The Carry flag has the same meaning in the decimal mode as in the binary mode.
5. Decimal subtract VALUE from accumulator.

SED ;ENTER DECIMAL MODE

SEC ;SET INVERTED BORROW

SBC #VALUE ; (A) = (A) - VALUE IN DECIMAL
CLD ;s LEAVE DECIMAL MODE

6. Subtract the contents of memory locations ADDR and ADDR +1 (MSB in
ADDR+1) from memory locations DIFF and DIFF+1 (MSB in DIFF+1).

LDA DIFF ;SUBTRACT LSB'S WITH NO BORROW
SEC

SBC ADDR

STA DIFF

LDA DIFF+1 iSUBTRACT MSB'S WITH BORROW
SBC ADDR+1

STA DIFF+1

7. Subtract 16-bit number VAL16 (VAL16M more significant byte, VAL16L
less significant byte) from memory locations DIFF and DIFF+1 (MSB in
DIFF+1).

LDA DIFF iSUBTRACT LSB'S WITH NO BORROW
SEC

SBC #VALl6L

STA DIFF

LDA DIFF+1 :SUBTRACT MSB'S WITH BORROW
SBC $vaLle6M

STA DIFF+1

8. Decimal subtract inverse of borrow from accumulator.

SED ;ENTER DECIMAL MODE
SBC #0 ;i (A) = (A) - (1-CARRY) IN DECIMAL
CLD ;LEAVE DECIMAL MODE

78 6502 ASSEMBLY LANGUAGE SUBROUTINES

Subtraction in Reverse
Instructions

1. Subtract accumulator from VALUE and place difference in accumulator.

EOR
CLC
ADC
CLC
ADC

or

STA
LDA
SEC
SBC

§SFF
#1
$#VALUE
TEMP
#VALUE

TEMP

;ONE'S COMPLEMENT A
;TWO'S COMPLEMENT A

;FORM -A + VALUE

;SAVE A TEMPORARILY
;FORM VALUE .- A

The Carry acts as an inverted borrow in either method; that is, the Carry is set to
1 if no borrow is necessary.

2. Subtract accumulator from the contents of memory location ADDR and
place difference in accumulator.

EOR
CLC
ADC
CLC
ADC

STA
LDA
SEC
SBC

3. Decimal subtract

#SFF
#1
ADDR

TEMP
ADDR

TEMP

accumulator.
SED
STA TEMP
LDA #VALUE
SEC ‘
SBC TEMP
CLD

;ONE'S COMPLEMENT A
;TWO'S COMPLEMENT A
;FORM -A + (ADDR)

;SAVE A TEMPORARILY
;FORM (ADDR) - A

accumulator from VALUE and place difference in

;ENTER DECIMAL MODE
;FORM VALUE - A

;:LEAVE DECIMAL MODE

4. Decimal subtract accumulator from the contents of memory location
ADDR and place difference in accumulator.

SED
STA
LDA
SEC
SBC
CLD

TEMP
ADDR

TEMP

;ENTER DECIMAL MODE
;FORM (ADDR) -~ A

; LEAVE DECIMAL MODE

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

Subtraction with Borrow
(Carry) Instructions

1. Subtract inverse of borrow from accumulator.
SBC 40 () = @A) - (1-CARRY)

2. Decimal subtract VALUE from accumulator with borrow.

SED ;ENTER DECIMAL MODE
SBC #VALUE i (A) = (A) - VALUE - BORROW IN DECIMAL
CLD ;LEAVE DECIMAL MODE

3. Decimal subtract memory location ADDR from accumulator with borrow.

SED ;ENTER DECIMAL MODE
"SBC ADDR ;i (A) = (A) - VALUE - BORROW IN DECIMAL
¢LD ;LEAVE DECIMAL MODE

4, Subtract the contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1) from memory locations DIFF and DIFF+1 (MSB in DIFF+1) with
borrow.

LDA DIFF ;SUBTRACT LSB'S WITH BORROW

SBC ADDR

STA DIFF .

LDA DIFF+1 7SUBTRACT MSB'S WITH BORROW

SBC ADDR+1

STA DIFF+1

5. Subtract 16-bit number VAL16 (VAL16M more significant byte, VAL16L
less significant byte) from memory locations DIFF and DIFF+1 (MSB in
DIFF+1) with borrow.

LDA DIFF ;SUBTRACT LSBR'S WITH BORROW
SBC VAL16L

STA DIFF

LDA DIFF+1 iSUBTRACT MSB'S WITH BORROW

SBC VAL16M
STA DIFF+1

Increment Instructions

1. Increment accumulator, setting the Carry flag if the result is zero.

CLC ;CLEAR CARRY

ADC #1 ; INCREMENT BY ADDING 1
or

SEC ;SET CARRY

ADC #0 ; INCREMENT BY ADDING 1

80 6502 ASSEMBLY LANGUAGE SUBROUTINES

2 Increment accumulator without affecting the Carry flag.

TAX ;MOVE A TO X
INX ; INCREMENT X
TXA

INX does not affect the Carry flag; it does, however, affect the Zero flag.
3. Increment stack pointer.

TSX ;MOVE § TO X
INX ; THEN INCREMENT X AND RETURN VALUE
TXS
or
TAX ;SAVE A
PLA ; INCREMENT STACK POINTER
TXA ;RESTORE A

Remember that PLA affects the Zero and Negative flags.
4. Decimal increment accumulator (add 1 to A in decimal).

SED ' ;ENTER DECIMAL MODE
CLC

ADC #1 :(A) = (A) + 1 DECIMAL
CLD ; LEAVE DECIMAL MODE

Remember that INC and DEC produce binary results even when the D flag is set.

5. Increment contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1).

INC ADDR ; INCREMENT LSB
BNE DONE)
INC ADDR+1 ;CARRY TO MSB IF LSB GOES TO ZERO
DONE NOP
or
LDA ADDR ; INCREMENT LSB
CLC
ADC #1
STA ADDR
LDA ADDR+1 sWITH CARRY TO MSB
ADC #0 ’
STA * ADDR+1

The first alternative is clearly much shorter.

6. Decimal increment contents of memory locations ADDR and ADDR+1
(MSB in ADDR+1).

SED ;ENTER DECIMAL MODE
LDA ADDR ;ADD 1 TO LSB
CLC

ADC $1

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 81

STA ADDR

BCC DONE
LDA ADDR+1 ;CARRY TO MSB IF NECESSARY
ADC #0
STA ADDR+1
DONE CLD ;LEAVE DECIMAL MODE

INC produces a binary result even when the Decimal Mode flag is set. Note that
we could eliminate the BCC instruction from the program without affecting the
result, but the change would increase the average execution time. .

Decrement Instructions

1. Decrement accumulator, clearing the Carry flag if the result is FF,..

SEC ;SET INVERTED BORROW

SBC #l ;DECREMENT BY SUBTRACTING 1
or '

CLC ;CLEAR INVERTED BORROW

SBC #0 ;DECREMENT BY SUBTRACTING 1
or

CLC ;CLEAR CARRY

ADC #SFF ;DECREMENT BY ADDING -1

2. Decrement accumulator without affecting the Carry flag.

TAX sMOVE A TO X
DEX ; DECREMENT X
TXA

DEX does not affect the Carry flag; it does, however, affect the Zero flag.
3. Decrement stack pointer.

TSX sMOVE S TO X
DEX ;THEN DECREMENT X AND RETURN VALUE
TXS

You can also decrement the stack pointer with PHA or PHP, neither of which
affects any flags.

4. Decimal decrement accumulator (subtract 1 from A in decimal).

SED ;ENTER DECIMAL MODE
SEC

SBC #1 ;{(A) = (A) -~ 1 DECIMAL
CLD ;LEAVE DECIMAL MODE

5. Decrement contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1).

82 65502 ASSEMBLY LANGUAGE SUBROUTINES

LDA ADDR ;IS LSB ZERO?

BNE DECLSB

DEC ADDR+1 ;YES, BORROW FROM MSB
DECLSB DEC ADDR ;BEFORE DECREMENTING LSB

Decrementing a 16-bit number is significantly more difficult than incrementing
one. In fact, incrementing is not only faster but also leaves the accumulator
unchanged; of course, one could replace LDA with LDX, LDY, or the sequence
INC, DEC. An alternative that uses no registers is

INC ADDR ;IS LSB 2ERO?

DEC ADDR

BNE DECLSB

DEC ADDR+1 ;YES, BORROW FROM MSB
DECLSB DEC ADDR ;BEFORE DECREMENTING LSB

6. Decimal decremeni contents of memory locations ADDR and ADDR+1
(MSB in ADDR+1).

SED ;ENTER DECIMAL MODE
LDA ADDR ;SUBTRACT 1 FROM LSB
SEC

SBC #1

STA ADDR
BCS DONE

LDA ADDR+1 ;BORROW FROM MSB IF NECESSARY
SBC #0
STA ADDR+1

DONE CLD ;LEAVE DECIMAL MODE

DEC produces a binary result even when the Decimal Mode flag is set. Note that
we could eliminate the BCS instruction from the program without affecting the
result, but the change would increase the average execution time. :

Multiplication Instructions

1. Multiply accumulator by 2.
ASL A ;sMULTIPLY BY SHIFTING LEFT

The following version places the Carry (if any) in Y.

LDY #0 ;ASSUME MSB = 0

ASL A +sMULTIPLY BY SHIFTING LEFT

BCC DONE .

INY ;AND MOVING CARRY TO Y
DONE NOP

2. Multiply accumulator by 3 (using ADDR for temporary storage).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 83

STA ADDR ;SAVE A
ASL A ;2 XA
ADC ADDR ;3 XA
3. Multiply accumulator by 4.

ASL A 2 X A
ASL A :4 XA

We can easily extend cases 1, 2, and 3 to multiplication by other small integers.
4. Multiply an index register by 2.

TAX iMOVE TO A
ASL A sMULTIPLY BY SHIFTING LEFT
TXA ;RETURN RESULT :

5. Multiply the contents of memory locations ADDR and ADDR+1 (MSBin
ADDR+1) by 2.

ASL ADDR sMULTIPLY BY SHIFTING LEFT
ROL ADDR+1 ;AND MOVING CARRY OVER TO MSB

6. Multiply the contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1) by 4.

ASL ADDR sMULTIPLY BY SHIFTING LEFT
ROL ADDR+1 ;AND MOVING CARRY OVER TO MSB
ASL . ADDR ;THEN MULTIPLY AGAIN

ROL ADDR+1

Eventually, of course, moving one byte to the accumulator, shifting the
accumulator, and storing the result back in memory becomes faster than
leaving both bytes in memory.

Division Instructions

1. Divide accumulator by 2 unsigned.
LSR A ;DIVIDE BY SHIFTING RIGHT

2. Divide accumulator by 4 unsigned.

LSR A ;DIVIDE BY SHIFTING RIGHT
LSR A

3. Divide accumulator by 2 signed.

TAX ;SAVE ACCUMULATOR
ASL A {MOVE SIGN TO CARRY
TXA ;RESTORE ACCUMULATOR

ROR A iSHIFT RIGHT BUT PRESERVE SIGN

84 6502 ASSEMBLY LANGUAGE SUBROUTINES

The second instruction moves the original sign bit (bit 7) to the Carry flag, so the
final rotate can preserve it. This is known as an arithmetic shift, since it preserves
the sign of the number while reducing its magnitude. The fact that the sign bit is
copied to the right is known as sign extension.

4. Divide the contents of memory locations ADDR and ADDR +1 (MSB in
ADDR+1) by 2 unsigned.

LSR ADDR+1 ;DIVIDE BY SHIFTING RIGHT
ROR ADDR ;AND MOVING CARRY OVER TO LSB

5. Divide the contents of memory locations ADDR and ADDR+1 (MSB in
ADDR+1) by 2 signed.

LDA ADDR+1 ;MOVE SIGN TO CARRY

ASL A

ROR ADDR+1 ;DIVIDE BY SHIFTING RIGHT WITH SIGN
ROR ADDR ;AND MOVING CARRY OVER TO LSB

Comparison Instructions

1. Compare VALUE with accumulator bit by bit, setting each bit position that
is different.

EOR $VALUE

Remember, the EXCLUSIVE OR of two bits is 1, if and only if the {wo bits are
different.

2. Compare memory locations ADR1and ADR1+1 (MSBin ADRI+ 1) with
memory locations ADR2 and ADR2+1 (MSB in ADR2+1). Set Carry if the
first operand is greater than or equal to the second one (that is, if ADRI1 and
ADR1+ 1 contain a 16-bit unsigned number greater than or equal to the contents
of ADR2 and ADR2+1). Clear Carry otherwise. Set the Zero flag if the two
operands are equal and clear it otherwise.

LDA ADR1+1 ;COMPARE MSB'S
CMP ADR2+1
BCC DONE ;CLEAR CARRY, ZEROC IF 2ND IS LARGER
BNE DONE ;SET CARRY, CLEAR ZERO IF 1ST LARGER
LDA ADR1 ;IF MSB'S EQUAL, COMPARE LSB'S
CMP ADR2 ;CLEAR CARRY IF 2ND IS LARGER

DONE NOP

3. Compare memory locations ADR1 and ADR1+1 (MSBin ADR1+1) with
the 16-bit number VAL16 (VAL16M more significant byte, VAL16L less signifi-
cant byte). Set Carry if the contents of ADR1 and ADRI1+1 are greater than or

CHAPTER 2:'IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 85

equal to VAL16 in the unsigned sense. Clear Carry 6therwise. Set the Zero flag it
the contents of ADR1 and ADR1+1 are equal to VAL16, and clear it otherwise.

LDA ADR1+1 ;COMPARE MSB'S
CMP #vaLleM
BCC DONE ;CLEAR CARRY, ZERO IF VALl6 LARGER
BNE DONE ;SET CARRY, CLEAR ZERO IF DATA LARGER
LDA ADR1 ;IF MSB'S EQUAL, COMPARE LSB'S
CMP #VAL16L ;CLEAR CARRY IF VAL16 LARGER

DONE NOP

4. Compare memory locations ADR1and ADR1+1 (MSBin ADRI + 1) with
memory locations ADR2 and ADR2+1 (MSB in ADR2+1). Set Carry if the
first operand is greater than or equal to the second one in the unsigned sense.

LDA ADR1l ;COMPARE LSB'S

CMP ADR2)
LDA ADR1+1 iSUBTRACT MSB'S WITH BORROW
SBC ADR2+1

We use SBC on the more significant bytes in order to include the borrow from the
less significant bytes. This sequence destroys the value in A and sets the Zero flag
only from the final subtraction.

5. Compare memory locations ADR1and ADR1+1 (MSBin ADR1 +1) with
the 16-bit number VAL16 (VAL16M more significant byte, VAL16L less signifi-
cant byte). Set Carry if the contents of ADR1 and ADR1+1 are greater than or
equal to VAL16 in the unsigned sense.

LDA ADR1 ;COMPARE LSB'S
CMP VAL16L
LDA ADR1+1 iSUBTRACT MSB'S WITH BORROW

SBC VALléM

If you want to set the Carry if the contents of ADR1 and ADR1+1 are greater
than VAL16, perform the comparison with VAL16+1. '

6. Compare stack pointer with the contents of memory location ADDR. Set
Carry if the stack pointer is greater than or equal to the contents of the memory
location in the unsigned sense. Clear Carry otherwise. Set the Zero flag if the two
values are equal and clear it otherwise.

TSX iMOVE STACK POINTER TO X
CPX ADDR ;AND THEN COMPARE

7. Compare stack pointer with the 8-bit number VALUE. Set Carry if the
stack pointer is greater than or equal to VALUE in the unsigned sense. Clear
Carry otherwise. Set the Zero flag if the two values are equal and clear it other-
wise. ’

TSX ;MOVE STACK POINTER TO X
CPX #VALUE ;AND THEN COMPARE

86 6502 ASSEMBLY LANGUAGE SUBROUTINES

8. Block comparison. Compare accumulator with memory bytes starting at
address BASE and continuing until €ither a match is found (indicated by
Carry=1) or until a byte counter in memory location COUNT reaches zero (indi-
cated by Carry=0). -

LDY COUNT ;GET COUNT
BEQ NOTFEND ;EXIT IF COUNT IS ZERO
LDX #0 ;START INDEX AT ZERO
CMPBYT CMP BASE, X ;CHECK CURRENT BYTE
BEQ DONE ;DONE IF MATCH FOUND (CARRY = 1)
INX ;OTHERWISE, PROCEED TO NEXT BYTE
DEY '
BNE CMPBYT ;1IF ANY ARE LEFT
NOTFND CLC ;OTHERWISE, EXIT CLEARING CARRY
DONE NOP

Remember, comparing two equal numbers sets the Carry flag.

Two’s Complement
(Negate) Instructions

‘1. Negate accumulator.

EOR #$SFF ;ONE 'S COMPLEMENT
CLC .
ADC #1 ;TWO'S COMPLEMENT

The two’s complement is the one’s complement plus 1.

STA TEMP ;ALTERNATIVE IS 0 - (A)
LDA #0
SEC

SBC TEMP
2. Negate memory location ADDR.

LDA $#0 ;FORM 0 - (ADDR)
SEC
SBC ADDR

STA ADDR
3. Negate memory locations ADDR and ADDR+1 (MSB in ADDR+1).

LDA ADDR ;ONE'S COMPLEMENT LSB
EOR #SFF)
CLC ;ADD 1 FOR TWO'S COMPLEMENT
. ADC #1
STA ADDR
. LDA ADDR+1 ;ONE'S COMPLEMENT MSB
EOR #SFF .
ADC #0 . ;ADD CARRY FOR TWO'S COMPLEMENT

STA ADDR+1 -

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 87

or
LDA #0 ;FORM 0 - (ADDR+1l) (ADDR)
SEC
SBC ADDR- ;SUBTRACT LSB'S WITHOUT BORROW
STA ADDR
LDA #0 :SUBTRACT MSB'S WITH BORROW
SBC ADDR+1

STA ADDR+1

4. Nine’s complement accumulator (that is, replace A with 99— A).

STA TEMP ;FORM 99-A
LDA #599
SEC

SBC TEMP

There is no need to bother with the decimal mode, since 99— A is always a valid
BCD number if A originally contained a valid BCD number.

5. Ten’s complement accumulator (that is; replace A with 100—A).

SED ;ENTER DECIMAL MODE
STA TEMP ;FORM 100-a

LDA #0

SEC

SBC TEMP

CLD ;s LEAVE DECIMAL MODE

Extend Instructions

1. Extend accumulator to a 16-bit unsigned number in memory locations
ADDR and ADDR+1 (MSB in ADDR+1).

STA ADDR ;8-BIT MOVE

LDA #0 EXTEND TO 16 BITS WITH 0'S
STA ADDR+1

2. Extend accumulator to a 16-bit signed number in‘memory locations ADDR
and ADDR+1 (MSB in ADDR+1).

STA ADDR ;8-BIT MOVE

ASL A ;MOVE SIGN BIT TO CARRY
LDA #SFF :(A) = -1 + SIGN BIT
ADC #0

EOR #SFF ; (A) = -SIGN BIT

STA ADDR+1 ;SET MSB TO =-SIGN BIT

The result of the calculation is —(—1+SIGN BIT) —1=—SIGN BIT. That is,
(ADDR+1) = 00if A was positive and FF ; if A was negative. An alternative is

88 6502 ASSEMBLY LANGUAGE SUBROUTINES

STA ADDR ; 8-BIT MOVE

LDX #$SFF p(X) = -1

ASL A

BCS STRSGN :

INX) ; (X) = -1+(1 - SIGN BIT) = -SIGN BIT
STRSGN STX ADDR+1 ;SET MSB TO -SIGN BIT

3. Extend bit 0 of accumulator across entire accumulator; that is, (A) = 00 if
bit 0 = 0 and FFl6ifbitO = 1.

LSR A ;CARRY = BIT 0
LDA #SFF i(A) = -1 + BIT 0
ADC #0

EOR §SFF ;(A) = -BIT 0

As in case 2, the result we want is — 1 if the specified bit is 1 and 0 if the specified
bit is 0. That is, we want the negative of the original bit value. The sequence LDA
#$FF, ADC %0 obviously produces the result —14Carry. The one’s comple-
ment then gives us the negative of what we had minus 1 (or 1—Carry—1 =
—Carry).

4. Sign function. Replace the value in the accumulator by 00 if it is positive and
by FF , if it is negative.

ASL - A ;MOVE SIGN BIT TO CARRY
LDA $SFF ~ ;(A) = -1 + SIGN BIT
ADC #0 :

EOR #SFF ; (A) = =SIGN BIT

5. Sign function of a memory location. Set accumulator to 00 if memory loca-
tion ADDR is positive and to FF if it is negative.

LDX 4SFF ;ASSUME NEGATIVE

LDA ADDR ;IS (ADDR) POSITIVE?

BMI DONE

INX ;YES, SET SIGN TO ZERO
DONE TXA

The approach shown in case 4 can also be used.

LOGICAL INSTRUCTIONS

In this group, we consider logical AND, logical OR, logical EXCLUSIVE OR,
logical NOT (complement), shift, rotate, and test instructions.

Logical AND Instructions

1. Clear bit of accumulator.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 89

AND #MASK ;CLEAR BIT BY MASKING
MASK has 0 bits in the positions to be cleared and 1 bits ip the positions that are
to be left unchanged. For example,

AND #%11011011 ;CLEAR BITS 2 AND 5

Remember, logically ANDing a bit with 1 leaves it unchanged.

2. Bit test-set the flags according to the value of a bit of memory location
ADDR.

Bits 0 through §

LbAa $#MASK
BIT ADDR ;TEST BIT OF ADDR

MASK should have a 1 in the position to be tested and 0s everywhere else. The
Zero flag will be set to 1 if the bit tested is 0 and to 0 if the bit tested is 1.

Bits 6 or 7

BIT ADDR ;TEST BITS 6 AND 7 OF ADDR

This single instruction sets the Negative flag to bit 7 of ADDR and the Overflow
flag to bit 6 of ADDR, regardless of the value in the accumulator. Note that the
flags are not inverted as the Zero flag is in normal masking.

3. Logical AND immediate with condition codes (flags). Logically AND a
byte of immediate data with the contents of the status register, clearing those
flags that are logically ANDed with Os. This instruction is implemented on the
6809 microprocessor.

PHP ;MOVE STATUS TO A

PLA

AND #MASK ;CLEAR FLAGS

PHA ;RETURN RESULT TO STATUS
PLP

Logical OR Instructions

1. Set bit of accumulator.

ORA #MASK ;SET BIT BY MASKING

MASK has 1 bits in the positions to be set and 0 bits in the positions that are to be
left unchanged. For example,

ORA #%00010010 ;SET BITS 1 AND 4

90 6502 ASSEMBLY LANGUAGE SUBROUTINES

Remember, logically ORing a bit with 0 leaves it unchanged.

2. Test memory locations ADDR and ADDR+1 for 0. Set the Zero flag if
both bytes are 0.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO
ORA ADDR+1

The Zero flag is set if and only if both bytes of the 16-bit number are 0. The other
flags are also changed.

3. Logical OR immediate with condition codes (flags). Logically OR a byte of
immediate data (MASK) with the contents of the status register, setting those
flags that are logically ORed with 1s. This instruction is implemented on the 6809
microprocessor.

PHP ;MOVE STATUS TO A

PLA

ORA #MASK ;SET FLAGS

PHA ;RETURN RESULT TO STATUS
PLP

Logical EXCLUSIVE OR
Instructions

1. Complement bit of accumulator.
EOR $MASK ;COMPLEMENT BIT BY MASKING

MASK has 1 bits in the positions to be complemented and 0 bits in the positions
that are to be left unchanged. For example,

EOR #$11000000 ;COMPLEMENT BITS 6 AND 7

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.
2. Complement accumulator, setting flags.
EOR $%11111111 ;COMPLEMENT ACCUMULATOR

Logically EXCLUSIVE ORing the accumulator with all 1s inverts all the bits.

3. Compare memory location ADDR with accumulator bit by bit, setting each
bit position that is different.

EOR ADDR ;BIT-BY-BIT COMPARISON

The EXCLUSIVE OR functidn is the same as a ‘‘not equal’’ function. Note that
the Negative (Sign) flag is 1 if the two operands have different values in bit posi-
tion 7.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 91

4. Add memory location ADDR to accumulator logically (i.e., without any
carries between bit positions).
EOR ADDR ;LOGICAL ADDITION

The EXCLUSIVE OR function is also the same as a bit by bit sum with no carries.
Logical sums are often used to form checksums and error-detecting or error-cor-
recting codes.

Logical NOT instructions

1. Complement accumulator, setting flags.
EOR #SFF ; COMPLEMENT ACCUMULATOR

Logically EXCLUSIVE ORing with all is inverts all the bits.

2. Complement bit of accumulator.

ECR #MASK ;COMPLEMENT BIT BY MASKING
MASK has 1 bits in the positions to be complemented and 0 bits in the positions
that are to be left unchanged. For example,

EOR #%01010001 ;COMPLEMENT BITS 0, 4, AND 6

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

3. Complement a memory location,

LDA ADDR
EOR #SFF ;COMPLEMENT
STA ADDR

4. Complement bit 0 of a memory location.

INC ADDR ;COMPLEMENT BY INCREMENTING
or

DEC ADDR ;COMPLEMENT BY DECREMENTING
Either of these instructions may, of course, affect the other bits in the memory
location. The final value of bit 0, however, will surely be 0-if it was originally 1
and 1 if it was originally 0.

5. Complement digit of accumulator.

* Less significant digit

EOR #300001111 ;COMPLEMENT LESS SIGNIFICANT 4 BITS

- More significant digit
EOR #%$11110000 ;COMPLEMENT MORE SIGNIFICANT 4 BITS

92 6502 ASSEMBLY LANGUAGE SUBROUTINES

These procedures are useful if the accumulator contains a decimal digit in nega-
tive logic (e.g., the input from a typical ten-position rotary or thumbwheel
switch).

6. Complement Carry flag.

ROR A ;MOVE CARRY TO BIT 7 OF A
EOR | $$FF ;COMPLEMENT ALL OF A

ROL A ;MOVE COMPLEMENTED CARRY BACK

Other combinations such as ROL, EOR, ROR, or ROR, EOR, ASL will work just
as well. We could leave the accumulator intact by saving it in the stack originally
and restoring it afterward.

An alternative that does not affect the accumulator is

BCC SETCAR

CLC ;CLEAR CARRY 1F IT WAS SET
BCC DONE
SETCAR SEC ;SET CARRY IF IT WAS CLEARED

DONE NOP

Shift Instructions

1. Shift accumulator right arithmetically, preserving the sign bit.

TAX ;SAVE ACCUMULATOR

ASL A ;MOVE SIGN BIT TO CARRY

TXA

ROR A ;SHIFT RIGHT, PRESERVING SIGN

We need a copy of the sign bit for an arithmetic shift. Of course, we could use a
memory location for temporary storage instead of the index register.
2. Shift memory locations ADDR and ADDR +1 (MSB in ADDR +1) left
logically. :
ASL ADDR ;SHIFT LSB LEFT LOGICALLY
ROL ADDR+1 ;AND MOVE CARRY OVER TO MSB

The key point here is that we must shift the more significant byte circularly (i.e.,
rotate it). The first 8-bit shift moves one bit (the least significant bit for a right
shift and the most significant bit for a left shift) to the Carry. The 8-bit rotate then
moves that bit from the Carry into the other half of the word.

3. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) right
logically.

LSR ADDR+1 ;SHIFT MSB RIGHT LOGICALLY
ROR ADDR ;AND MOVE CARRY OVER TO LSB

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 93

4. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) right
arithmetically.

LDA ADDR+1 ;MOVE SIGN BIT TO CARRY

ASL A '

ROR ADDR+1 ;SHIFT MSB RIGHT ARITHMETICALLY
ROR ADDR ;AND MOVE CARRY OVER TO LSB

5. Digit shift memory locations ADDR and ADDR+1 (MSB in ADDR+1)
left; that is, shift the 16-bit number left 4 bits logically. .

LDX #4 sNUMBER OF SHIFTS = 4
LDA ADDR sMOVE LSB TO A

SHFT1 ASL A :SHIFT LSB LEFT LOGICALLY
ROL ADCDR+1 ;AND MOVE CARRY OVER TO MSB
DEX
BNE SHFT1 ;COUNT BITS .
STA ADDR sRETURN LSB TO ADDR

A shorter but slower version that does not use the accumulator is

LDX #4 ;NUMBER OF SHIFTS = 4

SHFT1 ASL ADDR ;SHIFT LSB LEFT LOGICALLY
ROL ADDR+1 ;AND MOVE CARRY OVER TO MSB
DEX
BNE SHFT1 ;COUNT SHIFTS

6. Digit shift memory locations ADDR and ADDR+1 (MSB in ADDR+1)
right; that is, shift the 16-bit number right 4 bits logically. -

LDX $4 ;NUMBER OF SHIFTS = 4
LDA ADDR sMOVE LSB TO A

SHFT1 LSR ADDR+1 ;SHIFT MSB RIGHT LOGICALLY
ROR A ;AND MOVE CARRY OVER TO LSB
DEX
BNE SHFT1 ;COUNT SHIFTS
STA ADDR +RETURN LSB TO ADDR

A shorter but slower version that does not use the accumulator is

LDX #4 ;NUMBER OF SHIFTS = 4

SHFT1 LSR ADDR+1 ;SHIFT MSB RIGHT LOGICALLY
ROR ADDR ;AND MOVE CARRY OVER TO LSB
DEX
BNE SHFT1 ;COUNT SHIFTS

7. Normalize memory locations ADDR and ADDR+1 (MSBin ADDR+1);
that is, shift the 16-bit number left until the most significant bit is 1. Do not shift
-at all if the entire number is 0.

LDA ADDR+1 ;EXIT IF NUMBER ALREADY NORMALIZED
BMI DONE
ORA ADDR ;OR IF ENTIRE NUMBER IS ZERO

BEQ DONE
LDA ADDR sMOVE LSB TO A

94 6502 ASSEMBLY LANGUAGE SUBROUTINES

SHIFT ASL ~ A ;SHIFT LSB LEFT LOGICALLY 1 BIT
ROL ADDR+1 ;AND MOVE CARRY OVER TO MSB
BPL SHIFT ;CONTINUE UNTIL MSB Is 1
STA ADDR ;RETURN LSB TO ADDR

DONE NOP

Rotate Instructions

A rotate through or with Carry acts as if the data were arranged in a circle with
its least significant bit connected to its most significant bit through the Carry flag.
A rotate without Carry differs in that it acts as if the least significant bit of the data
were connected directly to the most significant bit.

1. Rotate memory locations ADDR and ADDR+1 (MSBin ADDR +1) right
1 bit position through Carry.

ROR ADDR+1 ;ROTATE BIT 8 TO CARRY
ROR ADDR ;AND ON IN TO BIT 7

2. Rotate memory locations ADDR and ADDR+1 (MSBin ADDR + 1) right
1 bit position without Carry.

LDA ADDR ;CAPTURE BIT 0 IN CARRY

ROR A :

ROR ADDR+1 ;ROTATE MSB WITH BIT 0 ENTERING AT LEFT
ROR ADDR ;ROTATE LSB

3. Rotate memory locations ADDR and ADDR+1 (MSB in ADDR+1) left
1 bit position through Carry.
ROL ADDR / ;ROTATE BIT 7 TO CARRY
ROL ADDR+1 ;AND ON IN TO BIT 8
4. Rotate memory locations ADDR and ADDR+1 (MSB in ADDR + 1) left
1 bit position without Carry. ”

LDA ADDR+l :CAPTURE BIT 15 IN CARRY

ROL A

ROL ADDR ;ROTATE LSB WITH BIT 15 ENTERING AT RIGHT
N i

ROL ADDR+1

Test Instructions

1. Test accurmnulator. Set flags according to the value in the accumulator with-
out changing that value.

TAX ;MOVE AND SET FLAGS
or .

TAY ;MOVE AND SET FLAGS

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 95

The following alternative does not affect either index register.

CMP #0 ;TEST ACCUMULATOR
The instructions AND #$FF or ORA #0 would also do the job without affecting
the Carry (CMP #0 sets the Carry flag).

2. Test index register. Set flags according to the value in an index register
without changing that value.
CPX #0 ;CHECK VALUE IN INDEX REGISTER

3. Test memory location. Set flags according to the value in memory location
ADDR without changing that value.

INC ADDR ;CHECK VALUE IN MEMORY LOCATION
DEC ADDR

4. Test a pair of memory locations. Set the Zero flag according to the value in
memory locations ADDR and ADDR+1.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO
ORA ADDR+1 ’

This sequencé sets the Zero flag to 1 if and only if both bytes of the 16-bit number
are 0. This procedure can readily be extended to handle numbers of any length.

5. Test bit of accumulator.
AND #MASK ;TEST BIT BY MASKING

MASK has a 1 bit in the position to be tested and 0 bits elsewhere. The instruc-
tion sets the Zero flag to 1 if the tested bit position contains 0 and to 0 if the tested
bit position contains 1. For example,

AND #800001000 ;TEST BIT 3 BY MASKING

The result is 0 if bit 3 of A is 0 and 00001000 (binary) if bit 3 of A is 1. So the Zero
flag ends up containing the logical complement of bit 3.

6. Compare memory location ADDR with accumulator bit by bit. Set each:
each bit position that is different.

EOR ADDR ;BIT-BY-BIT COMPARISON

The EXCLUSIVE OR function ‘is the same as a ““not equal’’ function.

DATA TRANSFER INSTRUCTIONS

In this group, we consider load, store, move, exchange, clear, and set instruc-
tions.

96 6502 ASSEMBLY LANGUAGE SUBROUTINES

Load Instructions

1. Load accumulator indirect from address in memory locations PGZRO and
PGZRO+1.

LDY #0 ;AVOID INDEXING
LDA (PGZRO) ,Y ;LOAD INDIRECT INDEXED

The only instruction that has true indirect addressing is JMP. However, you can
produce ordinary indirect addressing by using the postindexed (indirect indexed)
addressing mode with index register Y set.to 0.

An alternative approach is to clear index register X and use preindexing.

LDX #0 ;AVOID INDEXING

'LDA (PGZRO, X) ;LOAD INDEXED INDIRECT
The advantage of the first approach is that one can index from the indirect
address with Y. For example, we could load addresses POINTL and POINTH
indirectly from the address in memory locations PGZRO and PGZRO+1 as
follows:

LDY #0 ;AVOID INDEXING

LDA (PGZRO) , ¥ ;GET LSB OF ADDRESS INDIRECTLY
STA POINTL ‘

INY ;GET MSB OF ADDRESS INDIRECTLY
LDA (PGZRO) , Y

STA POINTH : ‘

2. Load index register X indirect from address in memory locations PGZRO
and PGZRO+1.

LDY $0 ;AVOID INDEXING
LDA (PGZRO) , Y ; LOAD ACCUMULATOR INDIRECT INDEXED
TAX

Only the accumulator can be loaded using the indirect modes, but its contents can
be transferred easily to an index register.

3. Load index register Y indirect from address in memory locations PGZRO
and PGZRO+1.

LDX #0 . ;AVOID INDEXING .

LDA (PGZRO, X) ;LOAD ACCUMULATOR INDEXED INDIRECT
TAY ' :

4. Load stack pointer immediate with the 8-bit number VALUE.
LDX §VALUE ;INITIALIZE STACK POINTER

TXS

Only index register X can be transferred to or from the stack pointer.

5. Load stack pointer direct from memory location ADDR.

LDX ADDR ; INITIALIZE STACK POINTER
TXS

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 97

6. Load status register immediate with the 8-bit number VALUE.

LDA #VALUE ;GET THE VALUE
PHA ;TRANSFER IT THROUGH STACK
PLP

This procedure allows the user of a computer system to initialize the status
register for debugging or testing purposes.

7. Load status register direct from memory location ADDR.

LDA ADDR ;GET THE INITIAL VALUE.
PHA ;TRANSFER IT THROUGH STACK
PLP

8. Load index register from stack.

PLA ;TRANSFER STACK TO X THROUGH A
TAX

If you are restoring values from the stack, you must restore X and Y before A,
since there is no direct path from the stack to X or Y.

9. Load memory locations PGZRO and PGZRO+1 (a pointer on page 0) with
ADDR (ADDRH more significant byte, ADDRL less significant byte).

LDA #ADDRL ;INITIALIZE LSB
STA PGZRO
LDA #ADDRH ;INITIALIZE MSB

STA PGZRO+1

There is no simple way to initialize the indirect addresses that must be saved on
page 0.

Store Instructions

1. Store accumulator indirect at address in memory locations PGZRO and
PGZRO+1.

LDY #0 ;AVOID INDEXING

STA (PGZRO) ,Y ;STORE INDIRECT INDEXED
or

LDX #0 tAVOID INDEXING

STA (PGZRO, X) ;STORE INDEXED INDIRECT

2. Store index register X indirect at address in memory locations PGZRO and
PGZRO+1.

LDY $0 ;AVOID INDEXING
TXA ;STORE X INDIRECT INDEXED THROUGH A
STA (PGZRO) ,Y

3. Store index register Y indirect at address in memory locations PGZRO and
PGZRO+1.

98 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDX #0 ;AVOID INDEXING
TYA ;STORE Y INDEXED INDIRECT THROUGH A
STA (PGZRO, X)

4. Store stack pointer in memory location ADDR.

'
TSX ;STORE S THROUGH X
STX ADDR

5. Store status register in memory location ADDR.

PHP ;STORE P THROUGH STACK AND A
PLA
STA ADDR

6. Store index register in stack.

TXA . ;STORE X (OR Y) IN STACK VIA A
PHA

If you are saving values in the stack, you must save A before X or Y, since there
is no direct path from X or Y to the stack.

Move Instructions

1. Transfer accumulator to status register.

PHA . ; TRANSFER THROUGH STACK
PLP

2. Transfer status register to accumulator.

PHP ; TRANSFER THROUGH STACK
PLA

3. Transfer index register X to index register Y.

TXA ; TRANSFER THROUGH ACCUMULATOR
TAY

or without changing the accumulator

STX TEMP : TRANSFER THROUGH MEMORY
LDY TEMP

4. Transfer accumulator to stack pointer.

TAX ; TRANSFER THROUGH X REGISTER
TXS

5. Transfer stack pointer to accumulator.

TSX : TRANSFER THROUGH X REGISTER
TXA

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 99

6. Move the contents of memory locations ADDR and ADDR + 1 (MSB in
ADDR+1) to the program counter.

JMP (ADDR) ;JUMP INDIRECT

Note that JMP with indirect addressing loads the program counter with the con-
tents of memory locations ADDR and ADDR +1: it acts more like LDA with
direct addressing than like LDA with indirect (indexed) addressing.

7. Block move. Transfer data from addresses starting at the one in memory
locations SORCE and SORCE+1 (on page 0) to addresses starting at the one in
memory locations DEST and DEST+1 (on page 0). Register Y contains the
number of bytes to be transferred.

MOVBYT DEY ;TEST NUMBER OF BYTES
LDA (SORCE) , Y {GET A BYTE FROM SOURCE
STA (DEST) ,Y sMOVE TO DESTINATION
TYA

BNE MOVBYT

We assume here that the addresses do not overlap and that the initial value of Y is
1 or greater. Chapter 5 contains a more general block move.

The program becomes simpler if we reduce the base addresses by 1. That is, let
memory locations SORCE and SORCE+1 contain an address one less than the
lowest address in the source area, and let memory locations DEST and DEST+1
contain an address one less than the lowest address in the destination area. Now
we can exit when Y is decremented to 0.

MOVBYT LDA (SORCE) , Y ;GET A BYTE FROM SOURCE
STA (DEST) ,Y ;MOVE BYTE TO DESTINATION
DEY '
BNE MOVBYT ;COUNT BYTES

The 0 index value is never used.

8. Move multiple (fill). Place the contents of the accumulator in metﬁory
locations starting at the one in memory locations PGZRO and PGZRO +1.

FILBYT DEY '
STA (PGZRO) ,Y ;FILL A BYTE

INY
DEY
BNE FILBYT ;COUNT BYTES

Chapter 5 contains a more general version.
Here again we can simplify the program by letting memory locations PGZRO and
PGZRO+1 contain an address one less than the lowest address in the area to be
filled. The revised program is

FILBYT STA (PGZRO) ,Y ;FILL A BYTE

DEY
BNE FILBYT ;COUNT BYTES

100 6502 ASSEMBLY LANGUAGE SUBROUTINES

Exchange Instructions

1. Exchange index registers X and Y.

STX TEMP ;SAVE X
TYA ;Y TO X
TAX
LDY TEMP ;X TO Y

or '

TXA ;SAVE X
PHA
TYA ;Y TO X
TAX
PLA ;X TO Y
TAY

Both versions take the same number of bytes (assuming TEMP is on page 0). The
second version is slower but reentrant.

2. Exchange memory locations 'ADDRI1 and ADDR2.

LDA ADDR1

LDX ADDR2Z
STX ADDR1
STA ADDR2

3. Exchange accumulator and top of stack.

TAY ;SAVE A

PLA ;GET TOP OF STACK
TAX ;SAVE TOP OF STACK
TYA ;A TO TOP OF STACK
PHA

TXA ;TOP OF STACK TO A

Clear Instructions

1. Clear the accumulator.
LDA $0

The 6502 treats 0 like any other number. There are no special clear instructions.

2. Clear an index register.

LDX #0
or
LDY #0
3. Clear memory location ADDR.
LDA $0
STA ADDR

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 01

Obviously, we could use X or Y as easily as A.
4. Clear memory locations ADDR and ADDR+1.

LDA #0
STA ADDR
STA ADDR+1

5. Clear bit of accumulator.
AND #MASK ;CLEAR BIT BY MASKING

MASK has 0 bits in the positions to be cleared and 1 bits in the positions that are
to be left unchanged. For example,

AND #810111110 ;CLEAR BITS 0 AND 6 OF A

Logically ANDing a bit with 1 leaves it unchanged.

Set Instructions

1. Set the accumiulator to FF,, (all ones in binary).
LDA #SFF
2. Setan index register to FF .

LDX #SFF

or
LDY #SFF

3. Set the stack pointer to FF,,.

LDX #SFF
TXS

The next available location in the stack is at address OlFF,b.
4. Setamemory location to FF .

LDA #SFF
STA ADDR

5. Set bit of accumulator.
ORA #MASK ;SET BIT BY MASKING

MASK has 1 bits in the positions to be set and 0 bits elsewhere. For example,
ORA #%10000000 ;SET BIT 7 (SIGN BIT)

Logically ORing a bit with 0 leaves it unchanged.

]

1 02 6502 ASSEMBLY LANGUAGE SUBROUTINES

BRANCH (JUMP) INSTRUCTIONS

Unconditional Branch Instructions

1. Unconditional branch relative to DEST.
CLC ;DELIBERATELY CLEAR CARRY
BCC DEST ;FORCE AN UNCONDITIONAL BRANCH

You can always force an unconditional branch by branching conditionally on a
condition that is known to be true. Some obvious alternatives are

SEC
BCS DEST
or
LDA $#0
BEQ DEST
or) . ’
LDA #1
BNE DEST

2. Jump indirect to address at the top of the stack.

RTS
RTS is just an ordinary indirect jump in which the processor obtains the destina-
tion from the top of the stack. Be careful, however, of the fact that the processor
adds 1 to the address before proceeding.

3. Jump indexed, assuming that the base of the address table is BASE and the
index is in memory location INDEX. The addresses are arranged in the usual
6502 manner with the less significant byte first.>-

- Using indirect addressing:

- LDA INDEX

ASL A ;DOUBLE INDEX FOR Z-BYTE ENTRIES
TAX

LDA BASE, X ;GET LSB OF DESTINATION

STA INDIR

INX

LDA " BASE, X ;GET MSB OF DESTINATION

STA INDIR+1

JME (INDIR) ;JUMP INDIRECT TO DESTINATION

. Using the stack:
LDA INDEX

ASL A ;:DOUBLE INDEX FOR 2-BYTE ENTRIES
TAX .
LDA BASE+1,X ;GET MSB OE\DESTINATION

PHA

'

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 03

LDA BASE , X ;GET LSB OF DESTINATION
PHA :
RTS ;JUMP INDIRECT TO DESTINATION OFFSET 1

The second approach is faster but less straightforward. Note the following:

1. You must store the more significant byte first since the stack is growing
toward lower addresses. Thus the bytes end up in their usual order.

2. Since RTS adds 1 to the program counter after loading it from the stack, the
table entries must all be 1 less than the actual destination addresses for this
method to work correctly.

3. Documentation is essential, since this method uses RTS for the rather
surprising purpose of transferring control to a subroutine, rather than from it.
The mnemonic may confuse the reader, but it obviously does not bother the
MiCroprocessor.

Conditional Branch Instructions

1. Branch if zero.
- Branch if accumulator contains zero.

TAX ;TEST ACCUMULATOR
BEQ DEST

or
CMP 0 ;TEST ACCUMULATOR
BEQ DEST
Either AND 3#8FF or ORA #0 will set the Zero flag if (A) =0 without affecting
the Carry flag (CMP 30 sets Carry).

+ Branch if an index register contains 0,

CpX #0 ;TEST INDEX REGISTER
BEQ DEST

The instruction TXA or the sequence INX, DEX can be used to test the contents
of index register X without affecting the Carry flag (CPX # 0 sets the Carry).
TXA, of course, changes the accumulator.

*Branch if a memory location contains 0.

INC ADDR ;TEST MEMORY LOCATION
DEC ADDR
BEQ DEST
or
LDA ADDR ;TEST MEMORY LOCATION

BEQ DEST

104 6502 ASSEMBLY LANGUAGE SUBROUTINES

- Branch if a pair of memory locations (ADDR and ADDR+1) both contain

0.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO
ORA ADDR+1
BEQ DEST

. Branch if a bit of the accumulator is zero.

AND #MASK ;TEST BIT OF ACCUMULATOR
BEQ DEST

MASK has a 1 bit in the position to be tested and Os elsewhere. Note the inver-
sion here; if the bit of the accumulator is a 0, the result is 0 and the Zero flag is set
to 1. Special cases are '

Bit position 7 ‘
ASL A ;MOVE BIT 7 TO CARRY
BCC DEST

Bit position 6

ASL A . ;sMOVE BIT 6 TO NEGATIVE FLAG
BPL DEST

Bit position 0

LSR A ;MOVE BIT 0 TO CARRY
BCC DEST

. Branch if a bit of a memory location is 0.

LDA #MASK

BIT ADDR ;TEST BIT OF MEMORY
BEQ DEST

MASK has a 1 bit in the position to be tested and Os elsewhere. Special cases are

Bit position 7

BIT ADDR : TEST MEMORY
BPL DEST :BRANCH ON BIT 7
Bit position 6

BIT ADDR ;TEST MEMORY
BVC DEST ;BRANCH ON BIT 6

The BIT instruction sets the Negative flag from bit 7 of the memory location and
the Overflow flag from bit 6, regardless of the contents of the accumulator.

We can also use the shift instructions to test the bits at the ends, as long as we

can tolerate changes in the memory locations.

Bit position 7

ASL ADDR ;TEST BIT 7
BCC DEST
Bit position 6
ASL ADDR ;TEST BIT 6

BPL DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 05

Bit position 0

LSR ADDR :TEST BIT 0
BCC DEST

- Branch if the Interrupt Disable flag (bit 2 of the status register) is 0.

PHP iMOVE STATUS TO A

PLA

AND #300000100 ;TEST INTERRUPT DISABLE

BEQ DEST ;BRANCH IF INTERRUPTS ARE ON

» Branch if the Decimal Mode flag (bit 3 of the status register) is 0.

PHP 7MOVE STATUS TO A

PLA

AND #800001000 ;TEST DECIMAL MODE FLAG
BEQ DEST ;BRANCH IF MODE IS BINARY

2. Branch if not 0.
+ Branch if accumulator does not contain 0.

TAX ;TEST ACCUMULATOR
BNE DEST.

or
CMP $0 ;TEST ACCUMULATOR
BNE DEST
+ Branch if an index register does not contain 0.
CPX #0 ;TEST INDEX REGISTER

BNE DEST

- Branch if a memory location does not contain 0. ‘

INC ADDR iTEST MEMORY LOCATION
DEC ADDR
BNE DEST

or

LDA ADDR ;TEST MEMORY LOCATION
BNE DEST

* Branch if a pair of memory locations (ADDR and ADDR+1) do not both
contain 0.

LDA ADDR iTEST 16-BIT NUMBER FOR ZERO
ORA ADDR+1
BNE DEST

- Branch if a bit of the accumulator is 1.

AND #MASK ;TEST BIT OF ACCUMULATOR
BNE DEST :

B2

1 06 6502 ASSEMBLY LANGUAGE SUBROUTINES

MASK has a 1 bit in the position to be tesled and Os elsewhere. Note the inver-
sion here; if the bit of the accumulator is a 1, the result is not 0 and the Zero flag
is set to 0. Special cases are

Bit position 7

ASL A ;MOVE BIT 7 TO CARRY
BCS DEST ;AND TEST CARRY

Bit position 6

ASL A , ;MOVE BIT 6 TO SIGN
BMI DEST ;AND TEST- SIGN

Bit position 0

LSR ' A ;MOVE BIT 0 TO CARRY
BCS DEST ;AND TEST CARRY

. Branch if a bit of a memory location is 1.

LDA #MASK
BIT ADDR ;TEST BIT OF MEMORY
BNE DEST

MASK has a 1 bit in the position to be tested and Os elsewhere. Spec1al cases are

Bit position 7

BIT ADDR ;TEST BIT 7 OF MEMORY
BMI DEST

Bit position 6 _

BIT ADDR ;TEST BIT 6 OF MEMORY

BVS DEST

The BIT instruction sets the Negative flag from bit 7 of the memory location and
the Overflow flag from bit 6, regardless of the contents of the accumulator.

We can also use the shift instructions to test the bits at the ends, as long as we
can tolerate changes in the memory locations.

Bit position 7
ASL ADDR ;TEST BIT 7 OF MEMORY
BCS DEST

This alternative is slower than BIT by 2 clock cycles, since it must write the result
back into memory.

Bit position 6
ASL ADDR ;TEST BIT 6 OF MEMORY
BMI DEST
Bit position 0
LSR ADDR ;TEST BIT 0 OF MEMORY

BCS DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 07

* Branch if the Interrupt Disable flag (bit 2 of the status register) is 1.

PHP ;MOVE STATUS TO A THROUGH STACK

PLA

AND #300000100 ;TEST INTERRUPT DISABLE

BNE DEST ;BRANCH IF INTERRUPTS ARE DISABLED
* Branch if the Decimal Mode flag (bit 3 of the status register) is 1.

PHP ;MOVE STATUS TO A THROUGH STACK

PLA

AND #300001000 ;TEST DECIMAL MODE FLAG

BNE DEST ;BRANCH IF MODE IS DECIMAL

3. Branch if Equal.
* Branch if (A) = VALUE.

CMP #VALUE ;COMPARE BY'SUBTRACTING
BEQ DEST

» Branch if (X) = VALUE.

CPX #VALUE ;COMPARE BY SUBTRACTING
BEQ DEST

Two special cases are
Branch if (X) =1

DEX
BEQ DEST

Branchif (X) = FF,,.

INX
BEQ DEST

« Branch if (A) = (ADDR).

CMP ADDR ;COMPARE BY SUBTRACTING
BEQ DEST

- Branch if (X) = (ADDR).

CPX ADDR) ;COMPARE BY SUBTRACTING
BEQ DEST

. Branch if the contents of memory locations PGZRO and PGZRO + 1 equal
VAL16 (VAL16L less significant byte, VAL16M more significant byte).

LDA PGZRO+1 ;COMPARE MSB'S
CMP #VAL16M
BNE DONE
LDA PGZRO ;AND LSB'S ONLY IF NECESSARY
CMP #VAL16L
BEQ DEST
DONE NOP

- Branch if the contents of memory locations PGZRO and PGZRO + 1 equal
those of memory locations LIML and LIMH.

108 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA PGZRO+1
CMP LIMH
BNE DONE
LDA PGZRO
CMP LIML
BEQ DEST

DONE NOP

;COMPARE MSB'S

;AND LSB'S ONLY IF NECESSARY

Note: Neither of the next two sequences should be used to test for stack over-
flow or underflow, since intervening instructions (for example, a single JSR or
RTS) could change the stack pointer by more than 1.

- Branch if (S) = VALUE.

TSX
CPX #VALUE .
BEQ DEST

. Branch if (S) = (ADDR).

TSX
CPX ADDR
BEQ DEST

4. Branch if Not Equal.
- Branch if (A) # VALUE.

CMP $VALUE
BNE DEST

. Branch if (X) # VALUE.
CPX $VALUE
BNE DEST

Two special cases are
Branch if (X) # 1.-

DEX

BNE DEST

- Branch if (X) # FF;,.
INX

BNE DEST

. Branch if (A) # (ADDR).

CMP ADDR
BNE DEST

- Branch if (X) # (ADDR).

CPX ADDR
BNE DEST

;CHECK IF STACK IS AT LIMIT

;CHECK IF STACK IS AT LIMIT

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

. Branch if the contents of memory locations PGZRO and PGZRO+1 are not
equal to VAL16 (VALI16L less significant byte, VAL16M more significant byte).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 09

LDA PGZRO+1 ;COMPARE MSB'S
CMP #VALléM
BNE DEST

LDA PGZRO ;AND LSB'S ONLY IF NECESSARY
CMP #VAL1l6L
BNE DEST

- Branch if the contents of memory locations PGZRO and PGZRO + 1 are not
equal to those of memory locations LIML and LIMH.

LDA PGZRO+1 ;COMPARE MSB'S

CMP LIMH

BNE DEST ,

LDA PGZRO ;COMPARE LSB'S ONLY IF NECESSARY

CMP LIML

BNE DEST _

Note: Neither of the next two sequences should be used to test for stack over-
flow or underflow, since intervening instructions (for example, a single JSR or

RTS) could change the stack pointer by more than 1.
« Branch if (S) # VALUE.

TSX ;CHECK IF STACK IS AT LIMIT
CPX #VALUE

BNE DEST

- Branch if (S) # (ADDR).

TSX ;CHECK IF STACK IS AT LIMIT

CpPX ADDR
BNE DEST

5. Branch if Positive.
- Branch if contents of accumulator are positive.

TAX ;TEST ACCUMULATOR
BPL DEST

or ,
CMP #0 ;TEST ACCUMULATOR
BPL DEST

Branch if contents of index register X are positive.

TXA ;TEST REGISTER X
BPL DEST
or
CPX #0 ;TEST INDEX REGISTER X
BPL DEST

- Branch if contents of a memory location are positive.

LDA ADDR ;TEST A MEMORY LOCATION
BPL DEST
or

BIT 'ADDR
BPL DEST

110 6502 ASSEMBLY LANGUAGE SUBROUTINES

. Branch if 16-bit number in memory locations ADDR and ADDR+1 (MSB
in ADDR+1) is positive.

BIT ADDR+1 ;TEST MSB
BPL DEST

Remember that BIT sets the Negative flag from bit 7 of the memory location,
regardless of the contents of the accumulator.

6. Branch if Negative.
- Branch if contents of accumulator are negative.

TAX ; TEST ACCUMULATOR
BMI DEST

or
CMP #0 ;sTEST ACCUMULATOR
BMI DEST .

. Branch if contents of index register X are negative.

TXA ;TEST REGISTER X
BMI DEST
or
CPX $#0 ‘ ;TEST INDEX REGISTER X
BM1 DEST

. Branch if contents of a memory location are negative.

BIT ADDR- ;TEST A MEMORY LOCATION
BMI DEST

or
LDA ADDR | ;TEST A MEMORY LOCATION

BMI DEST

. Branch if 16-bit number in memory locations ADDR.and ADDR +1 (MSB
in ADDR+1) is negative.

BIT ADDR+1 ;TEST MSB
BMI DEST

Remember that BIT sets the Negative flag from bit 7 of the memory location,
regardless of the contents of the accumulator.

7. Branch if Greater Than (Signed).

. Branch if (A) > VALUE.

CMP #VALUE ;COMPARE BY SUBTRACTING
BEQ DONE ;NO BRANCH IF EQUAL
BVS CHKOPP ;DID OVERFLOW OCCUR?
BPL DEST ;NO, THEN BRANCH ON POSITIVE
BMI DONE
CHKOPP BMI DEST ;YES, THEN BRANCH ON NEGATIVE

DONE NOP

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING Mooes 1711

The idea here is to branch if the result is greater than zero and overflow did not
occur, or if the result is less than zero and overflow did occur. Overflow makes
the apparent sign the opposite of the real sign.

+ Branch if (A) > (ADDR).

CMP ADDR ;COMPARE BY SUBTRACTING

BEQ DONE ;NO BRANCH IF EQUAL

BVS CHKOPP ;DID OVERFLOW OCCUR?

BPL DEST iNO, THEN BRANCH ON POSITIVE
BMI DONE

CHKOPP BMI DEST :YES, THEN BRANCH ON NEGATIVE
DONE NOP :

8. Branch if Greater Than or Equal To (Signed)
- Branch if (A) > VALUE.

CMP #$VALUE ;COMPARE BY SUBTRACTING
BVS CHKOPP ;DID OVERFLOW OCCUR?
BEL DEST 7NO, THEN BRANCH ON POSITIVE
BMI DONE
CHKOPP BMI DEST ;YES, THEN BRANCH ON NEGATIVE

DONE NOP

The idea here is to branch if the result is greater than or equal to 0 and overflow
did not occur, or if the result is less than 0 and overflow did occur.

- Branch if (A) > (ADDR).

CMP ADDR ;COMPARE BY SUBTRACTING
BVS CHKOPP ;DID OVERFLOW OCCUR?
BPL DEST :NO, THEN BRANCH ON POSITIVE
BMI DONE
CHKOPP BMI DEST ;YES, THEN BRANCH ON NEGATIVE

DONE NOP

9. Branch if Less Than (Signed)
* Branch if (A) < VALUE (signed).

CMP #VALUE ;COMPARE BY SUBTRACTING
BVS CHKOPP ;DID OVERFLOW OCCUR?
BMI DEST iNO, THEN BRANCH ON NEGATIVE
BPL DONE
CHKOPP BPL DEST ;YES, THEN BRANCH ON POSITIVE

DONE NOP

The idea here is to branch if the result is negative and overflow did not occur, or if
the result is positive but overflow did occur.

- Branch if (A) < (ADDR) (signed).

CMP ADDR ;COMPARE BY SUBTRACTING
BVS CHKOPP ;DID OVERFLOW OCCUR?
BMI DEST ;NO, THEN BRANCH ON NEGATIVE
BPL DONE
CHKOPF BPL DEST ;YES, THEN BRANCH ON POSITIVE

DONE NOP

112 6502 ASSEMBLY LANGUAGE SUBROUTINES

10. Branch if Less Than or Equal (Signed).
- Branch if (A) < VALUE (signed).

CMP $VALUE ;COMPARE BY. SUBTRACTING
BEQ DEST ;BRANCH IF EQUAL
BVS CHKOPP ;DID OVERFLOW OCCUR?
BMI DEST ;NO, THEN BRANCH ON NEGATIVE
BPL DONE
CHKOPP BPL DEST ;YES, THEN BRANCH ON POSITIVE
DONE NOP

The idea here is to branch if the result is 0, negative without overflow, or positive
with overflow. .

. Branch if (A) < (ADDR) (signed).

CMP ADDR ;COMPARE BY SUBTRACTING
BEQ DEST ;BRANCH IF EQUAL
BVS CHKOPP ;DID OVERFLOW OCCUR?
BMI DEST ;NO, THEN BRANCH ON NEGATIVE
BPL DONE
CHKOPP BPL DEST ;YES, THEN BRANCH ON POSITIVE

DONE NOP

11. Branch if Higher (Unsigned). That is, branch if the unsigned comparison
is nonzero and does not require a borrow.

. Branch if (A) > VALUE (unsigned).

CMP #$VALUE ;COMPARE BY SUBTRACTING
BEQ DONE ;NO BRANCH IF EQUAL
BCS DEST ;BRANCH IF NO BORROW NEEDED
DONE NOP
or .
CMP $#VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1
BCS DEST ;BRANCH IF NO BORROW NEEDED

It is shorter and somewhat more efficient to simply compare to a number one
higher than the actual threshold. Then we can use BCS, which causes a branch if
the contents of the accumulator are greater than or equal to VALUE+1
(unsigned).

. Branch if (A) > (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING
BEQ DONE ;NO BRANCH IF EQUAL
BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

. Branch if (X) > VALUE (unsigned).

CPX #VALUE+1 ;COMPARE BY SUBTRACTING VALUE+1l
BCS DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MoDEs 11 3

- Branch if (X) > (ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BEQ DONE ;NO BRANCH 1F EQUAL

BCS DEST iBRANCH IF NO BORROW NEEDED
DONE NOP

- Branch if the contents of memory locations PGZRO and PGZRO+ 1 (MSB
in PGZRO+1) are larger (unsigned) than VAL16 (VALI16L less significant byte,
VAL16M more significant byte).

LDA #VAL16L :GENERATE BORROW BY COMPARING LSB'S
CMP PGZRO

LDA #VAL16M ;COMPARE MSB'S WITH BORROW

SBC PGZRO+1

BCC DEST iBRANCH IF BORROW GENERATED

- Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB
in PGZRO+1) are larger (unsigned) than the contents of memory locations
LIML and LIMH (MSB in LIMH).

LDA LIML ;GENERATE BORROW BY COMPARING LSB'S
CMP PGZRO
LDA LIMH ;COMPARE MSB'S WITH BORROW
SBC PGZRO+1
BCC DEST ;BRANCH IF BORROW GENERATED

- Branch if (§) > VALUE (unsigned).
TSX ;CHECK IF STACK BEYOND LIMIT
CPX #VALUE
BEQ DONE :NO BRANCH IF EQUAL
BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

or

TSX ;CHECK IF STACK BEYOND LIMIT
cPX $VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1
BCS DEST ;BRANCH IF NO BORROW NEEDED

» Branch if (S) > (ADDR) (unsigned).
TSX ;CHECK IF STACK BEYOND LIMIT
BEQ DONE iNO BRANCH IF EQUAL
BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

12. Branch if Not Higher (Unsigned). Branch if the unsigned comparison is 0
or requires a borrow.

Branch if (A) < VALUE (unsigned).

CMP #VALUE ;COMPARE BY SUBTRACTING
BCC DEST ;BRANCH IF BORROW NEEDED
BEQ DEST ;BRANCH IF EQUAL

114 6502 ASSEMBLY LANGUAGE SUBROUTINES

If the two values are the same, CMP sets the Carry to indicate that no borrow was
necessary.

or
CMP $VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1
BCC DEST ;BRANCH IF BORROW NEEDED

Branch if (A) < (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING
BCC DEST ;BRANCH IF BORROW NEEDED
BEQ DEST ;BRANCH IF EQUAL
. Branch if (X) < VALUE (unsigned).
CPX $VALUE ;COMPARE BY SUBTRACTING
BCC DEST ;BRANCH IF BORROW NEEDED
BEQ DEST ;BRANCH IF EQUAL

or
CPX $VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1
BCC DEST ;BRANCH IF BORROW NEEDED
- Branch if (X) < (ADDR) (unsigned).
CPX ADDR ;COMPARE BY SUBTRACTING
BCC DEST ;BRANCH IF BORROW NEEDED
BEQ DEST ;BRANCH IF EQUAL

. Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB
in PGZRO+1) are less than or equal to (unsigned) VAL16 (VAL16M more sig-
nificant byte, VAL16L less significant byte).

LDA $VALl6L ;GENERATE BORROW BY COMPARING LSB'S
CMP PGZRO

LDA #vaLleM ;COMPARE MSB'S WITH BORROW

SBC PGZRO+1

BCS DEST sBRANCH IF NO BORROW GENERATED

. Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB
in PGZRO+ 1) are less than or equal to (unsigned) the contents of memory loca-
tions LIML and LIMH (MSB in LIMH).

LDA LIML ;GENERATE BORROW BY COMPARING LSB'S
CMP PGZRO

LDA LIMH ;COMPARE MSB'S WITH BORROW

SBC PGZRO+1 ,

BCS DEST ‘+BRANCH IF NO BORROW GENERATED

- Branch if (S) < VALUE (unsigned).

TSX ;CHECK IF STACK AT OR BELOW LIMIT
CPX #VALUE '
BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST " ;BRANCH IF EQUAL

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 1 5

or

TSX ;CHECK IF STACK AT OR BELOW LIMIT
CPX $VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1
BCC DEST

* Branch if (S) < (ADDR) (unsigned).

TSX ;CHECK IF STACK AT OR BELOW LIMIT
CPX ADDR

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL ’

13. Branch if Lower (Unsigned). That is, branch if the unsigned comparison
requires a borrow.

- Branch if (A) < (unsigned).

CMP #VALUE - ;COMPARE BY SUBTRACTING
BCC DEST ;BRANCH IF BORROW GENERATED

The Carry flag is set to 0 if the subtraction generates a borrow.
« Branch if (A) < (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING

BCC DEST * ;BRANCH IF BORROW GENERATED
« Branch if (X) < VALUE (unsigned).

cPX #VALUE ;COMPARE BY SUBTRACTING
BCC DEST ;BRANCH IF BORROW GENERATED
- Branch if (X) < (ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW GENERATED

- Branch if the contents of memory locations PGZRO and PGZRO+ 1 (MSB
in PGZRO+ 1) are less than (unsigned) VAL16 (VAL16L less significant byte,
VAL16M more significant byte).

LDA PGZRO ;GENERATE BORROW BY COMPARING LSB'S
CMP $#VAL16L

LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW

SBC #VAL16M

BCC DEST ;BRANCH IF BORROW GENERATED

* Branch if the contents of memory locations PGZRO and PGZRO+ 1 (MSB
in PGZRO+1) are less than (unsigned) the contents of memory locations LIML
and LIMH (MSB in LIMH).

LDA PGZRO ;GENERATE BORROW BY COMPARING LSB'S

CMP LIML
LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW
SBC °~ LIMH 4

BCC DEST ;BRANCH IF BORROW GENERATED

116 6502 ASSEMBLY LANGUAGE SUBROUTINES

. Branch if (S§) < VALUE (unsigned).

TSX ;CHECK IF STACK BELOW LIMIT
CPX $VALUE

BCC DEST ;BRANCH IF BORROW NEEDED

. Branch if (S) < (ADDR) (unsigned).

TSX ;CHECK IF STACK BELOW LIMIT
CPX ADDR

BCC DEST ;BRANCH IF BORROW NEEDED

14. Branch if Not Lower (Unsigned). That is, branch if the unsigned com-
parison does not require a borrow.
. Branch if (A) > VALUE (unsigned).

CMP #VALUE ;COMPARE BY SUBTRACTING
BCS DEST ;BRANCH IF NO BORROW GENERATED

The Carry flag is set to one if the subtraction does not generate a borrow.

. Branch if (A) > (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING
BCS DEST '

- Branch if (X) > VALUE (unsigned).

CPX $VALUE ;COMPARE BY SUBTRACTING

BCS DEST ;BRANCH IF NO BORROW GENERATED
- Branch if (X) >(ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BCS DEST :

- Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB
in PGZRO+ 1) are greater than or equal to (unsigned) VAL16 (VAL16L less sig-
nificant byte, VAL16M more significant byte).

LDA PGZRO ; GENERATE BORROW BY COMPARING LSB'S
CMF 4VAL16L .

LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW

SBC #VAL16M : .

BCS DEST ;BRANCH IF NO BORROW GENERATED

. Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB
in PGZRO+ 1) are greater than or equal to (unsigned) the contents of memory
locations LIML and LIMH (MSB in LIMH).

LDA PGZRO . ;GENERATE BORROW BY COMPARING LSB'S
CMP LIML

LDA PGZRO+1 . ;COMPARE MSB'S WITH BORROW

SBC LIMH

BCS DEST ;BRANCH IF NO BORROW GENERATED

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 1 7

+ Branch if (S) > VALUE (unsigned).

TSX iCHECK IF STACK AT OR ABOVE LIMIT
CPX #VALUE

BCS DEST iBRANCH IF NO BORROW NEEDED

- Branch if (S) > (ADDR) (unsigned).

TSX ;CHECK IF STACK AT OR ABOVE LIMIT
CPX ADDR

BCS DEST - 7BRANCH IF NO BORROW NEEDED

SKIP INSTRUCTIONS

You can implement skip instructions on the 6502 microprocessor by using
branch or jump instructions with the proper destination. That destination should
be one instruction beyond the one that the processor would execute sequentially
after the branch. Note that skip instructions are awkward to implement on most
microprocessors, because their instructions vary in length and it is difficult to
determine how long a jump is required to skip an instruction.

SUBROUTINE CALL INSTRUCTIONS

Unconditional Call Instructions

You can implement an indirect call on the 6502 microprocessor by calling a
routine that performs an ordinary indirect jump. A RETURN FROM
SUBROUTINE (RTS) instruction at the end of the subroutine will then transfer
control back to the original calling point. The main program performs

JSR TRANS

where TRANS is the subroutine that actually transfers control using a jump
instruction. Note that TRANS ends with a jump, not with a return. Typical
TR ANS routines are:

- To address in memory locations INDIR and INDIR + 1 (MSB in INDIR + 1).
JMP (INDIR) ’

- To address in table starting at memory location BASE and using index in
memory location INDEX.

7

1 1 8 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA INDEX

ASL A :DOUBLE INDEX FOR 2-BYTE ENTRIES .
TAX z
LDA BASE, X ;GET LSB OF DESTINATION
STA INDIR .
INX .
LDA BASE, X ;GET MSB OF DESTINATION
STA INDIR+1
JMP (INDIR) ;JUMP INDIRECT TO DESTINATION
- or o
LDA INDEX
ASL A ;DOUBLE INDEX FOR 2-BYTE ENTRIES
TAX :
LDA BASE+1,X ;GET MSB OF DESTINATION
PHA
LDA BASE, X ;:GET LSB OF DESTINATION
PHA
RTS ;JUMP TO DESTINATION PLUS 1

'In the second approach, the table must contain the actual destination addresses
minus 1, since RTS adds 1 to the program counter after loading it from the stack.

Conditional Call Instructions

You can implement a conditional call on the 6502 microprocessor by branch-
ing on the opposite condition around the call. For example, you could provide
CALL ON CARRY CLEAR with the sequence '

BCS NEXT ;:BRANCH AROUND IF CARRY SET
JSR SUBR ;CALL IF CARRY CLEAR
NEXT NOP

RETURN INSTRUCTIONS
Unconditional Return Instructions

The RTS instruction returns control automatically to the address saved at the
top of the stack (plus 1). If the return address is saved elsewhere (i.e., in two
memory locations), you can return control to it by performing an indirect jump.
Note that you must add 1 to the return address to simulate RTS.

The following sequence pops the return address from the top of the stack, adds
1 to it, and stores the adjusted value in memory locations RETADR and
RETADR+1.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 1 9

PLA ;POP LSB OF RETURN ADDRESS
CLC) ;ADD 1 TO LSB

ADC #1

STA RETADR

PLA ;POP MSB OF RETURN ADDRESS
ADC #0 ;ADD CARRY TO MSB

STA RETADR+1

A final JMP (RETADR) will now transfer control to the proper place.

Conditional Return Instructions

You can implement conditional returns on the 6502 microprocessor by using
the conditional branches (on the opposite condition) to branch around an RTS
instruction. That is, for example, you could provide RETURN ON NOT ZERO

_with the sequence

BEQ NEXT +BRANCH AROUND IF ZERO
RTS ;RETURN ON NOT ZERO
NEXT NOP

Return with Skip Instructions

- Return control to the_ address at the top of the stack after it has been incre-
mented by an offset NUM. This sequence allows you to transfer control past
parameters, data, or other nonexecutable items.

PLA ; POP RETURN ADDRESS
CLC
ADC #NUM+1 ; INCREMENT BY NUM
STA RETADR
PLA
ADC #0 ;WITH CARRY IF NECESSARY
STA RETADR+1
JMP (RETADR)

or
TSX 7MOVE STACK POINTER TO INDEX REGISTER
LDA $0101,Xx ; INCREMENT RETURN ADDRESS BY NUM
CLC
ADC #NUM
STA $0101,Xx
BCC DONE
INC $0102,X ;WITH CARRY IF NECESSARY

DONE RTS ’

-+ Change the return address to RETPT. Assume that the return address is
stored currently at the top of the stack. RETPT consists of RETPTH (MSB) and
RETPTL (LSB).

120 6502 ASSEMBLY LANGUAGE SUBROUTINES

TSX
LDA
STA
LDA
STA
RTS

#RETPTL
$0101,X
#RETPT

$0102,X

The actuél return point is RETPT + 1.

Return from Interrupt Instructions

If the initial portion of the interrupt service routine saves all the registers with
the sequence.)

PHA
TXA
PHA
TYA
PHA

;SAVE ACCUMULATOR
;SAVE INDEX REGISTER X

;SAVE INDEX REGISTER Y

A standard return sequence is

PLA
TAY
PLA
TAX
PLA

;RESTORE INDEX REGISTER Y
;RESTORE INDEX REGISTER X

;RESTORE ACCUMULATOR

MISCELLANEOUS INSTRUCTIONS

In this category, we include push and pop instructions, halt, wait, break,
decimal adjust, enabling and disabling of interrupts, translation (table lookup),
and other instructions that do not fall into any of the earlier categories.

1. Push Instructions.
. Push index register X.

TXA
PHA

;SAVE X IN STACK VIA A

. Push index register Y.

TYA
PHA

;SAVE Y IN STACK VIA A

. Push memory location ADDR.

LDA
PHA

ADDR ; SAVE MEMORY LOCATION IN STACK

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 21

ADDR could actually be an external priority register or a copy of it.
Push memory locations ADDR and ADDR+1 (ADDR+1 most signifi-
cant).

LDA ADDR+1 ;SAVE 16-BIT NUMBER IN STACK
PHA :

LDA ADDR

PHA

Since the stack is growing toward lower addresses, the 16-bit number ends up
stored in its usual 6502 form.
2. Pop (pull) instructions.
- Pop index register X.
PLA ;RESTORE X FROM STACK VIA A
TAX
- Pop index register Y.

PLA ;RESTORE Y FROM STACK VIA A
TAY

+ Pop memory location ADDR.

PLA ;RESTORE MEMORY LOCATION FROM STACK
STA ADDR :
ADDR could actually be an external priority register or a copy of it.
- Pop memory locations ADDR and ADDR+1 (ADDR +1 most significant
byte).
PLA ;RESTORE 16-BIT NUMBER FROM STACK
STA ADDR
PLA
STA ADDR+1
We assume that the 16-bit number is stored in the usual 6502 form with the less
significant byte at the lower address.

Wait Instructions

The simplest way to implement a wait on the 6502 microprocessor is to use an
endless loop such as:

HERE JMP HERE

The processor will continue executing the instruction until it is interrupted and
will resume executing it after the interrupt service routine returns control. Of
course, maskable interrupts must have been enabled or the processor will

122 6502 ASSEMBLY LANGUAGE SUBROUTINES

execute the loop endlessly. The nonmaskable interrupt can interrupt the pro-

cessor at any time.
Another alternative is a sequence that waits for a high-to-low transition on the

Set Overflow input. Such a transition sets the Overflow (V) flag. So the required
sequence is

CLV ;CLEAR THE OVERFLOW FLAG
WAIT BVC WAIT ;AND WAIT FOR A TRANSITION TO SET IT

This sequence is essentially a ‘“Wait for Input Transition”’ instruction.

Adjust Instructions

1. Branch if accumulator does not contain a valid decimal (BCD) number.

STA TEMP s SAVE ACCUMULATOR

SED sENTER DECIMAL MODE
CLC ;ADD 0 IN DECIMAL MODE
ADC #0

CLD ;LEAVE DECIMAL MODE

2. Decimal increment accumulator (add 1 to A in decimal).

SED ;ENTER DECIMAL MODE
CLC

ADC $#1 ;ADD 1 DECIMAL

CLD ; LEAVE DECIMAL MODE

3. Decimal decrement accumulator (subtract 1 from A in decimal).

SED ;ENTER DECIMAL MODE
SEC

SBC $l ;SUBTRACT 1 DECIMAL
CLD ; LEAVE DECIMAL MODE

4. Enter decimal mode but save the old Decimal Mode flag.

PHP ;SAVE OLD DECIMAL MODE FLAG
SED ;ENTER DECIMAL MODE

A final PLP instruction will restore the old value of the Decimal Mode flag (and
the rest of the status register as well).

5. Enter binary mode but save the old Decimal Mode flag.

PHE +SAVE OLD DECIMAL MODE FLAG
CLD ;ENTER BINARY MODE

A final PLP instruction will restore the old value of the Decimal Mode flag (and
the rest of the status register as well).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 23

Enable and Disable Interrupt Instructions

1. Enable interrupts but save previous value of I flag.

PHP ;SAVE OLD I FLAG

CLI ;ENABLE INTERRUPTS
After a sequence that must run with interrupts enabled, a PLP instruction will
restore the previous state of the interrupt system (and the rest of the status
register as well). '

2. Disable interrupts but save previous value of I flag.

PHP ;SAVE OLD I FLAG

SEI ;DISABLE INTERRUPTS
After a sequence that must run with interrupts disabled, a PLP instruction will
restore the previous state of the interrupt system (and the rest of the status
register as well)..

Translate Instructions

1. Translate the operand in A to a value obtained from the corresponding
entry in a table starting at the address in memory locations PGZRO and
PGZRO+1 (MSB in PGZRO+1).

TAY

LDA (PGZRO) ,Y ;REPLACE OPERAND WITH TABLE ENTRY
This procedure can be used to convert data from one code to another.

2. Translate the operand in A to a 16-bit value obtained from the correspond-
ing entry in a table starting at the address in memory locations PGZRO and
PGZRO+1 (MSB in PGZRO+1). Store the entry in memory locations TEMPL
and TEMPH (MSB in TEMPH).

ASL A ;DOUBLE INDEX FOR 2-BYTE ENTRIES
TAY

LDA (PGZRO),Y ;GET LSB OF ENTRY

STA TEMPL

INY .

LDA (PGZRO) ,Y ;GET MSB OF ENTRY

STA TEMPH

'

ADDITIONAL ADDRESSING MODES

- Indirect Addressing. You can provide indirect addressing on the 6502 pro-
cessor (for addresses on page 0), by using the postindexed (indirect indexed)

124 6502 ASSEMBLY LANGUAGE SUBROUTINES

addressing mode with register Y set to 0. A somewhat less powerful alternative
(because you cannot index from the indirect address) is to use preindexing
(indexed indirect addressing) with register X set to 0. Otherwise, indirect
addressing is available only for the JMP instruction. Note that with JMP, the
indirect address may be located anywhere in memory; it is not restricted to
page 0.
Examples

1. Load the accumulator indirectly from the address in memory locations
PGZRO and PGZRO+1.

LDY #0 ;SET INDEX TO ZERO
LDA (PGZRO) , Y ;LOAD INDIRECT INDEXED

b. Store the accumulator indirectly at the address in memory locations
PGZRO and PGZRO+1.

LDY #0 ;SET INDEX TO ZERO
STA (PGZRO) , Y ;STORE INDIRECT INDEXED

In the case of instructions that lack the indirect indexed mode (such as ASL,
DEC, INC, LSR, ROL, ROR), you must move the data to the accumulator, oper-
ate on it there, and then store it back in memory.

3. Increment the data at the address in memory locations PGZRO and
PGZRO+1.

LDY #0 ;SET INDEX TO ZERO

LDA (PGZRO) , Y ;GET THE DATA

CLC

ADC $#1 ; INCREMENT THE DATA
STA (PGZRO) ,Y ;STORE THE RESULT BACK

4. Logically shift right the data at the address in memory locations PGZRO
and PGZRO+1.

LDY $#0 ;SET INDEX TO ZERO
LDA (PGZRO) ,Y ;GET THE DATA
LSR A ;SHIFT IT RIGHT

- STA (PGZRO) ,Y ;STORE THE RESULT BACK

5. Clear the address in memory locations PGZRO and PGZRO+1.

LDY #0 ;SET INDEX TO ZERO |,
TYA ;DATA = ZERO
STA (PGZRO) , Y ;CLEAR THE INDIRECT ADDRESS

The only way to provide indirect addressing for other pages is to move the
indirect address to page 0 first.

6. Clear the address in memory locations INDIR and INDIR+1 (not on
page 0).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 25

LDA INDIR sMOVE INDIRECT ADDRESS TO PAGE ZERO
STA PGZRO

LDA INDIR+1

STA PGZRO+1

LDY #0 ;SET INDEX TO ZERO

TYA sDATA = ZERO

STA (PGZRO) ,Y ;CLEAR THE INDIRECT ADDRESS

- Indexed Addressing. Indexed addressing is available for most instructions in
the 6502 set. We will discuss briefly the handling of the few for which it is not
available and we will then discuss the handling of indexes that are larger than 256.

No indexing is available for BIT, CPX, CPY, JMP, and JSR. Only page 0
indexing is available for STX and STY. We can overcome these limitations as
follows:

1. BIT

BIT indexed can be simulated by saving the accumulator, using AND, and
restoring the accumulator. You should note that restoring the accumulator with
LDA, PHA, TXA, or TYA will affect the Zero and Negative flags. A typical
sequence without restoring the accumulator is:

PHA ;SAVE A
AND BASE, X ;LOGICAL AND INDEXED

The Zero flag is set as if an indexed BIT had been executed and the contents of A
are available at the top of the stack.
2. CPX or CPY

CPX or CPY indexed can be simulated by moving the index register to A and
using CMP. That is, CPX indexed with Y can be simulated by the sequence:

TXA . ;MOVE X TO A
CMP BASE, Y ;THEN COMPARE INDEXED
3. JMP

JMP indexed can be simulated by calculating the required indexed address,
storing it in memory, and using either JMP indirect or RTS to transfer control.
The sequences are:

LDA INDEX

ASL A ;DOUBLE INDEX FOR 2-BYTE ENTRIES
TAX

LDA BASE, X ;GET LSB OF DESTINATION

STA INDIR

INX '

LDA BASE, X ;GET MSB OF DESTINATION

STA INDIR+1

JMP (INDIR) 7JUMP INDIRECT TO DESTINATION

126 6502 ASSEMBLY LANGUAGE SUBROUTINES

or
LDA INDEX .
ASL A ;DOUBLE 1INDEX FOR 2-BYTE ENTRIES
TAX
LDA BASE+1,X ;GET MSB OF DESTINATION
PHA .
LDA BASE, X ;GET LSB OF DESTINATION
PHA
RTS ;JUMP INDIRECT TO DESTINATION OFFSET 1

The second approach requires that the table contain entries that are all 1 {ess than
the actual destinations, since RTS adds 1 to the program counter after restoring it
from the stack.

4. JSR

JSR indexed can be simulated by calling a transfer program that executes JIMP
indexed as shown above. The ultimate return address remains at the top of the
stack and a final RTS instruction will transfer control back to the original calling

. program. That is, the main program contains:

JSR TRANS

TRANS performs an indexed jump and thus transfers control to the actual
subroutine.

5. STX or STY

STX or STY indexed can be simulated by moving the index register to A and
using STA. That is, we can simulate STX indexed with Y by using the sequence:

TXA ;MOVE X TO A
STA . BASE,Y ;THEN STORE INDEXED

BASE can be anywhere in memory, not just on page 0.

We can handle indexes that are larger than 256 by performing an explicit addl-
tion on the more significant bytes and using. the indirect indexed addressing
mode. That is, if the base address is in memory locations PGZRO and PGZRO+1
and the index is in memory locations INDEX and INDEX+1, the following
sequence will place the corrected base address in memory locations TEMP and
TEMP+1 (on page 0).

LDA PGZRO :SIMPLY MOVE LSB
STA - TEMP

LDA PGZRO+1 ;ADD MSB'S

CLC

ADC INDEX+1

STA TEMP+1

TEMP and TEMP + 1 now contain a base address that can be used (in conjunétion
with INDEX) in the indirect indexed mode.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MoDEs 127

Examples
1. Load accumulator indexed.
LDY INDEX ;GET LSB OF INDEX
LDA (TEMP) , Y ;LOAD A INDIRECT INDEXED

2. Store accumulator indexed, assuming that we have saved A at the top of the
stack.

LDY INDEX :GET LSB OF INDEX
PLA sRESTORE A
STA (TEMP) ,Y ;STORE A INDIRECT INDEXED

- Autopreincrementing. Autopreincrementing means that the contents of the
index register are incremented automatically before they are used. You can pro-
vide autopreincrementing on the 6502 processor either by using INX or INY on
an index register or by using the 16-bit methods to increment a base address in
memory. :

Examples
- Load the accumulator from address BASE using autopreincrementing on
index register X. .
INX ;AUTOPREINCREMENT X
LDA BASE, X
We assume that the array contains fewer than 256 elements.

+ Load the accumulator from the address in memory locations PGZRO and
PGZRO + 1 using autopreincrementing on the contents of memory locations
INDEX and INDEX + 1.

INC INDEX ;AUTOPREINCREMENT INDEX

BNE DONE

INC INDEX+1 iWITH CARRY IF NECESSARY
DONE LDA PGZRO sMOVE LSB
‘ STA . TEMP

LDA PGZRO+1 ;ADD MSB'S

CLC

ADC INDEX+1

STA TEMP+1

LDY INDEX ;GET- LSB OF INDEX

LDA (TEMP) ,Y i LOAD ACCUMULATOR

If you must autoincrement by 2 (as in handli'ng arrays of addresses) use the
sequence

LDA INDEX sAUTOINCREMENT INDEX BY 2
CLC

ADC #2

STA INDEX

BCC DONE

INC INDEX+1 ;CARRY TO MSB IF NECESSARY

DONE NOP

128 6502 ASSEMBLY LANGUAGE SUBROUTINES

- Autopostincrementing. Autopostincrementing means that the contents of
the index register are incremented automatically after they are used. You can pro-
vide autopreincrementing on the 6502 processor either by using INX or INY on
an index register or by using the 16-bit methods to increment an index in
memory.

Examples

. Load the accumulator from address ‘BASE using autopostincrementing on
index register Y.

LDA BASE, Y ; AUTOPOSTINCREMENT Y
INY v

. Load the accumulator from the address in memory locations PGZRO and
PGZRO + 1 using autopostincrementing on the contents of memory locations
INDEX and INDEX + 1.

LDa PGZRO ;MOVE LSB OF BASE
STA TEMP
LDA PGZRO+1 ;ADD MSB'S OF BASE AND INDEX
CLC
aDcC INDEX+1
STA TEMP+1
LDY INDEX ;GET LSB OF INDEX
LDA (TEMP) ,Y ; LOAD ACCUMULATOR
INC INDEX ;AUTOPOSTINCREMENT INDEX
BNE DONE
INC INDEX+1 ;WITH CARRY IF NECESSARY
DONE NOP - '

- Autopredecrementing. Autopredecrementing means that the contents of the
index register are decremented automatically before they are used. You can pro-
vide autopredecrementing on the 6502 processor either by using DEX or DEY on
an index register or by using the 16-bit methods to decrement a base address or
index in memory. :

Examples

. Load the accumulator from address BASE using autopredecrementing on
index register X.

DEX ;AUTOPREDECREMENT X
LDA BASE, X
We assume that the array contains fewer than 256 elements.
. Load the accumulator from the address in memory locations PGZRO and
PGZRO + 1 using autopredecrementing on the contents of memory locations
INDEX and INDEX + 1.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 29

~

LDA INDEX sAUTOPREDECREMENT INDEX

BNE DECLSB

DEC INDEX+1 ;BORROWING FROM MSB IF NECESSARY
DECLSB DEC INDEX -

LDA PGZRO ;MOVE LSB OF BASE

STA TEMP

LDA PGZRO+1 ;ADD MSB'S OF BASE AND INDEX

CLC

ADC INDEX+1

STA TEMP+1

LDY INDEX ;GET LSB OF INDEX

LDA (TEMP) ,Y ; LOAD ACCUMULATOR

If you must autodecrement by 2 (as in handling arrays of addresses), use the
sequence:

'LDA INDEX ;AUTODECREMENT INDEX BY 2
SEC
SBC $2

STA INDEX

BCS DONE

DEC INDEX+1 ;BORROWING FROM MSB IF NECESSARY
DONE NOP

- Autopostdecrementing. Autopostdecrementing means that the contents of
the index register are decremented automatically after they are used. You can
provide autopostdecrementing on the 6502 processor by using either DEX or
DEY on an index register or by using the 16-bit methods to decrement an index
in memory.

Examples
* Load the accumulator from address BASE using autopostdecrementmg on
index register Y.
LDA BASE,Y ; AUTOPOSTDECREMENT Y
DEY
* Load the accumulator from the address in memory locations PGZRO and
PGZRO + 1 using autopostdecrementing on the contents of memory locations
INDEX and INDEX + 1.

LDA PGZRO sMOVE LSB OF BASE

STA TEMP

LDA PGZRO+1 ;ADD MSB'S OF BASE AND INDEX
CLC

ADC INDEX+1

STA TEMP+1

LDY INDEX ;GET LSB OF INDEX

LDA (TEMP) , Y ;LOAD ACCUMULATOR

CPY . #0 ;AUTOPOSTDECREMENT INDEX

BNE DECLSB

DEC INDEX+1 ;BORROWING FROM MSB IF NECESSARY

DECLSB DEC INDEX

130 5502 ASSEMBLY LANGUAGE SUBROUTINES

. Indexed indirect addressing (preindexing). The 6502 processor provides
preindexing for many instructions. We can simulate preindexing for the instruc-
tions that lack it"by moving the data to the accumulator using preindexing,
operating on it, and (if necessary) storing the result back into memory using
preindexing.

Examples

" 1. Rotate right the data at the preindexed address obtained by indexing with X
from base address PGZRO.

LDA (PGZRO, X) ;GET THE DATA
ROR A ;ROTATE DATA RIGHT .
STA (PGZRO,X) ;STORE RESULT BACK IN MEMORY

2. Clear the preindexed address obtained by indexing with X from base
address PGZRO.

LDA $#0 ;DATA = ZERO
STA (PGZRO, X) ;CLEAR PREINDEXED ADDRESS

Note that if the calculation of an effective address in preindexing produces a
result too large for eight bits, the excess is truncated and no error warning occurs.
That is, the processor provides an automatic wraparound on page 0.

. Indirect indexed addressing (postindexing). The 6502 processor provides
postindexing for many instructions. We can simulate postindexing for the
instructions that lack it by moving the data to the accumulator using postindex-
ing, operating on it, and (if necessary) storing the result back into memory using
postindexing. .

Examples

1. Decrement the data at the address in memory locations PGZRO and
PGZRO+1 using Y as an index.

LDA (PGZRO) ,Y ;GET THE DATA

SEC

SBC $1 ;DECREMENT DATA BY 1

STA (PGZRO) ,Y ;STORE RESULT BACK IN MEMORY

2. Rotate left the data at the address in memory locations PGZRO and
PGZRO+1 using Y as an index.

LDA (PGZRO) , Y ;GET THE DATA
ROL A ;ROTATE DATA LEFT
STA (PGZRO) ,Y ; STORE RESULT BACK IN MEMORY

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 31

REFERENCES

1. Osborne, A. An Introduction to Microcomputers, Volume 1: Basic Concepts,
2nd ed. Berkeley: Osborne/McGraw-Hill, 1980.

2. Leventhal, L.A. 6800 Assembly Language Programming. Berkeley: Osborne/
McGraw-Hill, 1978

3. Leventhal, L.A. 6809 Assembly Language Programming. Berkeley: Osborne/
McGraw-Hill, 1981.

4. Fischer, W.P. ‘“‘Microprocessor Assembly Language Draft Standard,”
IEEE Computer, December 1979, pp. 96-109.

5. Scanlon, L.J. 6502 Software Design, Howard W. Sams, Indianapolis, Ind.,
1980, pp. 111-13.

Chapter 3 Common
Programming Errors

This chapter describes common errors in 6502 assembly language programs.
The final section describes common errors in input/output drivers and interrupt
service routines. Our aims here are the following:

. To warn programmers of potential trouble spots and sources of confusion.
- To indicate likely causes of programming errors. !
- To emphasize some of the techniques and warnings presented in Chapters 1

and 2.

* To inform maintenance programmers where to look for errors and misin-
terpretations.

- To provide the beginner with a starting point in the difficult process of locat-
ing and correcting errors.

Of course, no list of errors can be complete. We have emphasized the most
common ones in our work, but we have not attempted to describe the rare, sub-
tle, or occasional errors that frustrate even the experienced programmer.
However, most errors are remarkably simple once you uncover them and this list
should help you debug most programs.

CATEGORIZATION OF
PROGRAMMING ERRORS

We may generally divide common 6502 programming errors into the following
categories:

* Using the Carry improperly. Typical errors include forgetting to clear the
Carry before addition or set it before subtraction, and interpreting it incorrectly
after comparisons (it acts as an inverted borrow).

133

134 5502 ASSEMBLY LANGUAGE SUBROUTINES

+ Using the other flags improperly. Typical errors include using the wrong flag
(such as Negative instead of Carry), branching after instructions that do not
affect a particular flag, inverting the branch conditions (particularly when the
Zero flag is involved), and changing a flag accidentally before branching.

. Confusing addresses and data. Typical errors include using immediate
instead of direct addressing, or vice versa, and confusing memory locations on
page 0 with the addresses accessed indirectly through those locations.

- Using the wrong formats. Typical errors include using BCD (decimal)
instead of binary, or vice versa, and using binary or hexadecimal instead of
ASCIL

- Handling arrays incorrectly. Typical problems include accidentally overrun-
ning the array at one end or the other (often by 1) and ignoring page boundaries
when the array exceeds 256 bytes in length.

- Ignoring implicit effects. Typical errors include using the contents of the
accumulator, index register, stack pointer, flags, or page 0 locations without con-
sidering the effects of intermediate instructions on these contents. Most errors
arise from instructions that have unexpected, implicit, or indirect effects.

. Failing to provide proper initial conditions for routines or for the microcom-
puter as a whole. Most routines require the initialization of counters, indirect
addresses, indexes, registers, flags, and temporary storage locations. The
microcomputer as a whole requires the initialization of the Interrupt Disable and
Decimal Mode flags and all global RAM addresses (note particularly indirect
addresses and other temporary storage on page 0).

- Organizing the program incorrectly. Typical errors include skipping or
repeating initialization routines, failing to update indexes, counters, or indirect
addresses, and forgetting to save intermediate or final results.

A common source of errors, one that is beyond the scope of our discussion, is
conflict between user programs and systems programs. A simple example is a
user program that saves results in temporary storage locations that operating
systems or utility programs need for their own purposes. The results thus disap-
pear mysteriously even though a detailed trace of the user program does not
reveal any errors.

More complex sources of conflict may include the interrupt system, input/out-
put ports, the stack, or the flags. After all, the systems programs must employ the
same resources as the user programs. (Systems programs generally attempt to
save and restore the user’s environment, but they often have subtle or unex-
pected effects.) Making an operating system transparent to the user is a problem
.comparable to devising a set of regulations, laws, or tax codes that have no
loopholes or side effects.

L e
St

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 35

USING THE CARRY IMPROPERLY

The following instructions and conventions are the most common sources of
errors:

+ CMP, CPX, and CPY affect the Carry as if it were an inverted borrow, that
is, they set the Carry if the subtraction of the memory location from the register
did not require a borrow, and they clear the Carry if it did. Thus, Carry = 1 if no
borrow was necessary and Carry = 0 if a borrow was required. This is contrary to
the sense of the Carry in most other microprocessors (the 6800, 6809, 8080,
8085, or Z-80).

+ SBC subtracts the inverted Carry flag from the normal subtraction of the
memory location from the accumulator. That is, it produces the result (A) —
(M) — (1 — Carry). If you do not want the Carry flag to affect the result, you
must set it with SEC. Like comparisons, SBC affects the Carry as if it were an
inverted borrow; Carry = 0 if the subtraction requires a borrow and 1 if it does
not.)

» ADC always includes the Carry in the addition. This produces the result (A)
= (A) + (M) + Carry. If you do not want the Carry flag to affect the result, you
must clear it with CLC. Note that the Carry has its normal meaning after ADC.

Examples

1. CMP ADDR

This instruction sets the flags as if the contents of memory location ADDR had
been subtracted from the accumulator. The Carry flag is set if the subtraction
does not require a borrow and cleared if it does. Thus -

Carry = 1if (A) > (ADDR)
Carry = 0if (A) < (ADDR)

We are assuming that both numbers are unsigned. Note that the Carry is set (to
1) if the numbers are equal.

2. SBC #VALUE

This instruction subtracts VALUE and 1 — Carry from the accumulator. It sets
the flags just like a comparison. To subtract VALUE alone from the accumulator,
you must use the sequence

SEC ;SET INVERTED BORROW
SBC #VALUE ;SUBTRACT VALUE

This sequence produces the result (A) = (A) — VALUE. If VALUE = 1, the
sequence is equivalent to a Decrement Accumulator instruction (remember,
DEC cannot be applied to A). ‘

1 36 6502 ASSEMBLY LANGUAGE SUBROUTINES

3. ADC #VALUE .
This instruction adds VALUE and Carry to the accumulator. To add VALUE
alone to the accumulator, you must use the sequence

CLC ;CLEAR CARRY
ADC #$VALUE - ;ADD VALUE

This sequence produces the result (A) = (A) + VALUE. If VALUE = 1, the
sequence is equivalent to an Increment Accumulator instruction (remember,
INC cannot be applied to A).

USING THE OTHER FLAGS
INCORRECTLY

Instructions for the 6502 generally have expected effects on the flags. The only
special case is BIT. Situations that require some care include the following:

. Store instructions (STA, STX, and STY) do not affect the flags, so the flags
do not necessarily reflect the value that was just stored. You may need to test the
register by transferring it to another register or comparing it with 0. Note that load
instructions (including PHA) and transfer instructions (excluding TXS) affect
the Zero and Negative flags.

. After a comparison (CMP, CPX, or CPY), the Zero flag indicates whether
the operands are equal. The Zero flag is set if the operands are equal and cleared if
they are not. There is some potential confusion here — BEQ means branch if the
result is equal to 0; that is, branch if the Zero flag is 1. Be careful of the difference
between the result being 0 and the Zero flag being 0. These two conditions are
opposites; the Zero flag is 0 if the result is not 0.

. In comparing unsigned numbers, the Carry flag indicates which number is
larger. CMP, CPX, or CPY clears the Carry if the register’s contents are greater
than or equal to the other operand and sets the Carry if the register’s contents are
less. Note that comparing equal operands sets the Carry. If these alternatives
(greater than or equal and less than) are not what you need (you want the alterna-
tives to be greater than and less than or equal), you can reverse the subtraction,
subtract 1 from the accumulator, or add 1 to the other operand.

. In comparing signed numbers, the Negative flag indicates which operand is
larger unless two’s complement overflow has occurred. We must first look at the
Overflow flag. If that flag is 0, the Negative flag indicates which operand is larger;
if that flag is 1, the sense of the Negative flag is inverted.

After a comparison (if no overflow occurs), the Negative flag is set if the
register’s contents are less than the other operand, and cleared if the register’s

b

CHAPTER 3: COMMON PROGRAMMING ERRORS 137

contents are greater than or equal to the other operand. Note that comparing
equal operands clears the Negative flag. As with the Carry, you can handle the
equality case in the opposite way by adjusting either operand or by reversing the
subtraction.

- If a condition holds and you wish the computer to do something, a common
procedure is to branch around a section of the program on the opposite condition.
For example, to incrément memory location OVFLW if the Carry is 1, use the
sequence

BCC NEXT

INC OVFLW
NEXT NOP

The branch condition is the opposite of the condition under which the section
should be executed.

* Increment and decrement instructions do not affect the Carry flag. This
allows the instructions to be used for counting in loops that perform multiple-
byte arithmetic (the Carry is needed to transfer carries or borrows between
bytes). Increment and decrement instructions do, however, affect the Zero and
Negative flags; you can use the effect on the Zero flag to determine whether an
increment has produced a carry. Note the following typical sequences:

1. 16-bit increment of memory locations INDEX and INDEX+1 (MSB in
INDEX+1)

INC INDEX ; INCREMENT LSB

BNE DONE
INC INDEX+1 ;AND CARRY TO MSB IF NECESSARY

DONE NOP
We determine if a carry has been generated by examining the Zero flag after
incrementing the less significant byte.

2. 16-bit decrement of memory locations INDEX and INDEX + 1 (MSB in
INDEX+1)

LDA INDEX ;CHECK LSB

BNE DECLSB

DEC INDEX+1 . ;BORROW FROM MSB IF NECESSARY
DECLSB DEC INDEX ;DECREMENT MSB

We determine if a borrow will be generated by examining lhe less significant byte
before decrementing it.

- The BIT instruction has rather unusual effects on the flags. It places bit 6 of
the memory location in the Overflow flag and bit 7 in the Negative flag, regard-
less of the value in the accumulator. Thus, only the Zero flag actually reflects the
logical ANDing of the accumulator and the memory location.

138 6502 ASSEMBLY LANGUAGE SUBROUTINES

- Only a few instructions affect the Carry or Overflow flags. The instructions
that affect Carry are arithmetic (ADC, SBC), comparisons (CMP, CPX, and
CPY), and shifts (ASL, LSR, ROL, and ROR), besides the obvious CLC and
SEC. The only instructions that affect Overflow are ADC, BIT, CLV, and SBC;
comparison and shift instructions do not affect the Overflow flag, unlike the
situation in the closely related 6800 and 6809 microprocessors.

Examples '
1. The sequence
STA $1700
BEQ DONE
will have unpredictable results, since STA does not affect any flags. Sequences
that will produce a jump if the value stored is 0 are

STA $1700
CMP #0 . ;TEST ACCUMULATOR
BEQ DONE

or
STA $1700

TAX ;TEST ACCUMULATOR
BEQ DONE

2. The instruction CMP #8$25 sets the Zero flag as follows:

Zero = 1 if the contents of A are 25,4
Zero = 0if the contents of A are not 254

Thus, if you want to increment memory location COUNT, if (A) = 25, use the
sequence

CMP #$25 ;IS A 252
BNE DONE
INC COUNT ;YES, INCREMENT COUNT

DONE NOP
Note that we use BNE to branch around the increment if the condition (A =
25,,) does not hold. It is obviously easy to err by inverting the branch condition.
3. The instruction CPX 3$25 sets the Carry flag as follows:

Carry = 0if the contents of X are between 00 and 24,4
Carry = 1if the contents of X are between 25, and FF 4

Thus, the Carry flag is cleared if X contains an unsigned number less than the
other operand and set if X contains an unsigned number greater than or equal to
the other operand.

o4
!

CHAPTER 3: COMMON PROGRAMMING ERRORS 139

If you want to clear the Carry if the X register contains 25, use CPX #3826
instead of CPX #$25. That is, we have -

CPX #$25

BCC LESS ;BRANCH IF (X) LESS THAN 25
or

CPX #526

BCC LESSEQ ;BRANCH IF (X) 25 OR LESS

4. The sequence SEC, SBC # 840 sets the Negative (Sign) flag as follows:

Negative = 0 if A is between 40, and 7F,, (normal signed arithmetic) or if A
is between 80, and CO0,, (because of two’s complement overflow)

Negative = 1if A is between 00, and 3F ; or between C1,, and FF,, (normal
signed arithmetic)

Two’s complement overflow occurs if A contains a number between 80,
(=128, in two’s complement) and CO,, (—64,, in two’s complement). Then
subtracting 40,, (64,)) produces a result less than — 128, ,, which is beyond the
range of an 8-bit signed number. The setting of the Overflow flag indicates this
out-of-range condition.

The following sequence will thus produce a branch if A contains a signed num-
ber less than 40, .

SEC ;SET INVERTED BORROW

SBC #540 ;SUBTRACT 40 HEX

BVS DEST ;BRANCH IF OVERFLOW IS SET
BMI DEST ;OR IF DIFFERENCE IS NEGATIVE

Note that we cannot use CMP here, since it does not affect the Overflow flag. We
could, however, use the sequence

CMP #0 ;BRANCH IF A IS NEGATIVE
BMI DEST
CMP $#$40 ;OR IF A IS POSITIVE BUT BELOW 40 HEX

BCC DEST
We eliminate the possibility of overflow by handling negative numbers sepa-
rately. ’

5. The sequence

INC ADDR
BCS NXTPG

will have unpredictable results, since INC does not affect the Carry flag. A
sequence that will produce a jump, if the result of the increment is 00 (thus
implying the production of a carry), is illustrated below.

140 5502 ASSEMBLY LANGUAGE SUBROUTINES

INC ADDR
BEQ NXTPG

We can tell when an increment has produced a carry, but we cannot tell when a
decrement has required a borrow since the result then is FF,,, not 0. Thus, it is
much simpler to increment a multibyte number than to decrement it.

6. The sequence

BIT ADDR
BVS DEST

produces a branch if bit 6 of ADDR is 1. The contents of the accumulator do not
affect it. Similarly, the sequence

BIT ADDR
BPL DEST

produces a branch if bit 7 of ADDR is 0. The contents of the accumulator do not
affect it. The only common sequence with BIT in which the accumulator matters
is

LDA #MASK
BIT ADDR

This sequence sets the Zero flag if logically ANDing MASK and the contents of
ADDR produces a result of 0. A typical exaraple using the Zero flag is
LDA #%00010000 ‘

BIT ADDR
BNE DEST ;BRANCH IF BIT 4 OF ADDR IS 1

This sequence forces a branch if the result of the logical AND is nonzero, that is,
if bit 4 of ADDR is 1.

The effects of BIT on the Overflow and Negative flags do not generally cause
programming errors since there are no standard, widely used effects that might
cause confusion. These effects do, However, create documentation problems
since the approach is unique and those unfamiliar with the 6502 cannot be
expected to guess what is happening.

7. The sequence

CMP #VALUE
BVS DEST

produces unpredictable results, since CMP does not affect the Overflow flag.
Instead, to produce a branch if the subtraction results in two’s complement over-
flow, use the sequence

© SEC ;SET INVERTED BORROW
SBC #$VALUE sSUBTRACT VALUE
BVS DEST ;BRANCH IF OVERFLOW OCCURS

CHAPTER 3: COMMON PROGRAMMING ERRORS 141

CONFUSING ADDRESSES AND DATA

The rules to remember are

+ The immediate addressing mode requires the actual data as an operand. That
is, LD A #840 loads the accumulator with the number 40,,.

. The absolute and zero page (direct) addressing modes require the address of
the data as an operand. That is, LD A $40 loads the accumulator with the contents
of memory location 0040,,.

- The indirect indexed and indexed indirect addressing modes obtain the
indirect address from two memory locations on page 0. The indirect address is in
two memory locations starting at the specified address; it is stored upside-down,
with its less significant byte at the lower address. Fortunately, the indexed
indirect (preindexed) mode is rarely used and is seldom a cause of errors. The
meaning of addressing modes with JMP and JSR can be confusing, since these
instructions use addresses as if they were data. The assumption is that one could
not transfer control to a number, so a jump with immediate addressing would be
meaningless. However, the instruction IMP $1C80 loads 1C80,, into the program
counter, just like a load with immediate addressing, even though we conven-
tionally say that the instruction uses absolute addressing. Similarly, the instruc-
tion JMP (ADDR) loads the program counter with the address from memory
locations ADDR and ADDR +1; it thus acts like a load instruction with absolute
(direct) addressing. :

Examples

1. LDX3#$20 loads the number 20,, into index register X. LDX $20 loads the
contents of memory location 0020, into index register X. ‘)

2. LDA ($40),Y loads the accumulator from the address obtained by indexing
with Y from the base address in memory locations 0040,, and 0041 , (MSB in
0041,(). Note that if LDA ($40),Y makes sense, then LDA ($41),Y generally
does not, since it uses the base address in memory locations 0041, and 0042, .
Thus, the indirect addressing modes generally make serise only if the indirect
addresses are aligned properly on word boundaries; however, the 6502 does not
check this alignment in the way that many computers (particularly IBM
machines) do. The programmer must make sure that all memory locations used
indirectly contain addresses with the bytes arranged properly.

Confusing addresses and their contents is a frequent problem in handling data
structures. For example, the queue of tasks to be executed by a ‘piece of test
equipment might consist of a block of information for each task. That block might
contain

+ The starting address of the test routine.

142 6502 ASSEMBLY LANGUAGE SUBROUTINES

- The number of seconds for which the test is to run.

. The address in which the result is to be saved.

. The upper and lower thresholds against which the result is to be compared.
- The address of the next block in the queue.

Thus, the block contains data, direct addresses, and mdlrect addresses. Typical
errors that a programmer could make are

. Transferring control to the memory locations containing the starting address
of the test routine, rather than to the actual starting address.

. Storing the result in the block rather than in the address specified in the
block.

. Using a threshold as an address rather than as data.

. Assuming that the next block starts within the current block, rather than at
the address given in the current block.

Jump tables are another common source of errors. The following are alterna-
tive implementations:

. Form a table of jump instructions and transfer control to the correct element
(for example, to the third jump instruction).

. Form a table of destination addresses and transfer control to the contents of
the correct element (for example, to the address in the third element).

You will surely have problems if you try to use the jump instructions as
indirect addresses or if you try to execute the indirect addresses.

FORMAT ERRORS

The rules you should remember are

. A $in front of a number (or an H at the end) indicates hexadecimal to the as-
sembler and a % in front or a B at the end indicates binary. Be careful — some as-
semblers use different symbols. '

. The default mode of most assemblers is decimal; that is, most assemblers
assume all numbers to be decimal unless they are specifically designated as some-
thing else. A few assemblers (such as Apple’s miniassembler and the mnemonic
entry mode'in Rockwell’s AIM- 65) assume hexadecimal as a default.

. ADC and SBC instructions produce decimal results if the Decimal Mode flag
is 1 and binary results if the Decimal Mode flag is 0. All other instructions,
including DEC, DEX, DEY, INC, INX, and INY, always produce binary results.

CHAPTER 3: COMMON PROGRAMMING ERRORS 143

You should make special efforts to avoid the following common errors:

* Omitting the hexadecimal designation ($ or H) from a hexadecimal data
item or address. The assembler will assume the item to be a decimal number if it
contains no letter digits. It will treat the item as a name if it is valid (it must start
with a letter in most assemblers). The assembler will indicate an error only if the
item cannot be interpreted as a decimal number or a name.

- Omitting the binary designation (% or B) from a binary data item. The as-
sembler will assume it to be a decimal number.

: (

- Confusing decimal (BCD) representations with binary representations.
Remember, ten is not an integral power of two, so the binary and BCD represen-
tations are not the same beyond nine. Standard BCD constants must be desig-
nated as hexadecimal numbers, not as decimal numbers.

- Confusing binary or decimal representations with ASCII representations. An
ASCII input device produces ASCII characters and an ASCII output device re-
sponds to ASCII characters.

Examples
1. LDA 2000
This mstructlon loads the accumulator from memory address 2000,, (07DO,),

not address 2000, . The assembler will not produce an error message, smce 2000
is a valid decimal Humber,

2. AND 00000011

This instruction logically ANDs the accumulator with the decimal number 11
(1011,), not with the binary number 11 (3,,). The assembler will not produce an
error message, since 00000011 is a valid decimal number despite its unusual
form.

3. ADC 340
This instruction adds 40,, (not 40, = 64,)) and the Carry to the accumulator.
Note that 40, is not the same as 40 BCD which is 40 ; 40, = 28, . The assem-

16
bler will not produce an error message, sirice 40 is a valid decnmal number.

4. LDA #3

This instruction loads the accumulator with the number 3. If this value is now
sent to an ASCII output device, it will respond as if it had received the character
ETX (03,,), not the character 3 (33,,). The correct version is

LDA $'3 ;GET AN ASCII 3
5. If memory location 0040, , contains a single digit, the sequence

LDA $40
STA PORT

1 44 6502 ASSEMBLY LANGUAGE SUBROUTINES

will not print that digit on an ASCII output device. The correct sequence is

LDA $40 ;GET DECIMAL DIGIT
CLC
ADC #'0 ;ADJUST TO ASCII
STA PORT

or
LDA $40 ;GET DECIMAL DIGIT
ORA #$00110000 ;ADJUST TO ASCII
STA PORT

6. If input port IPORT contains a single ASCII decimal digit, the sequence

LDA IPORT
STA $40

will not store the actual digit in memory location 0040, . Instead, it will store the
ASCII version, which is the actual digit plus 30, . The correct sequence is

LDA IPORT ;GET ASCII DIGIT

SEC
SBC #'0 ;ADJUST TO DECIMAL
STA $40

or
LDA IPORT ;GET ASCII DIGIT
AND #%11001111 ;ADJUST TO DECIMAL
STA $40 '

Handling decimal arithmetic on the 6502 microprocessor is simple, since the pro-
cessor has a Decimal Mode (D) flag. When that flag is set (by SED), all additions
and subtractions produce decimal results. So, the following sequences implement
decimal addition and subtraction:

. Decimal addition of memory location ADDR to the accumulator

SED :ENTER DECIMAL MODE
CLC

ADC ADDR ;ADD DECIMAL

CLD :LEAVE DECIMAL MODE

. Decimal subtraction of memory location ADDR from the accumulator

SED :ENTER DECIMAL MODE
SEC -

SBC ADDR ;SUBTRACT DECIMAL
CLD ;LEAVE DECIMAL MODE

Since increment and decrement instructions always produce binary results, we

must use the following sequences (assuming the D flag is set). .

. CHAPTER 3: COMMON PROGRAMMING ERRORS 145

Increment memory location 0040, in the decimal mode

LDA $40
CLC

ADC #1

STA $40

Decrement memory location 0040, in the decimal mode

LDA $40
SEC

SBC #1

STA $40

The problem with the decimal mode is that it has implicit effects. That is, the
same ADC and SBC instructions with the same data will produce different

results, depending on the state of the Decimal Mode flag. The following pro- .

cedures will reduce the likelihood of the implicit effects causing unforeseen
errors:

+ Initialize the Decimal Mode flag (with CLD) as part of the regular system
initialization. Note that RESET has no effect on the Decimal Mode flag.

» Clear the Decimal Mode flag as soon as you are through performing decimal
arithmetic.

- Initialize the Decimal Mode flag in interrupt service routines that include
ADC or SBC instructions. That is, such service routines should execute CLD
before performing any binary addition or subtraction.

HANDLING ARRAYS INCORRECTLY

The following situations are the most common sources of errors:

+ If you are counting an index register down to 0, the zero index value may
never be used. The solution is to reduce the base address or addresses by 1. For
example, if the terminating sequence in a loop is

DEX
BNE LOOP

the processor will fall through as soon as X is decr,ememed to 0. A typical adjusted
loop (clearing NTIMES bytes of memory) is

LDX $NTIMES
LDA #0

CLEAR STA BASE-1,X
DEX

BNE CLEAR

146 6502 ASSEMBLY LANGUAGE SUBROUTINES

Note the use of BASE—1 in the indexed store instruction. The program clears
addresses BASE through BASE + NTIMES—1.

. Although working backward through an array is often more efficient than
working forward, programmers generally find it confusing. Remember that the
address BASE + (X) contains the previous entry in a loop like the example shown
above. Although the processor can work backward just as easily as it can work for-
ward, programmers usually find themselves conditioned to thinking ahead.

. Be careful not to execute one extra iteration or stop one short. Remember,
memory locations BASE through BASE+N contain N+1 entries, not N entries.
It is easy to forget the last entry or, as shown above, drop the first one. On the
other hand, if you have N entries, they will occupy memory locations BASE
through BASE+N-1; now it is easy to find yourself working off the end of the

* - array.

. You cannot extend absolute indexed addressing or zero-page indexed
addressing beyond 256 bytes. If an index register contains FF , incrementing it
will produce a result of 00. Similarly, if an index register contains 00, decrement-
ing it will produce a result of FF (. Thus, you must be careful about incrementing
or decrementing index registers when you might accidentally exceed the capacity
of eight bits. To extend loops beyond 256 bytes, use the indirect indexed (postin-
dexed) addressing mode. Then the following sequence will add 1 to the more sig-
nificant byte of the indirect address when index register Y is incremented to 0.

INY ; INCREMENT INDEX REGISTER
BNE DONE
INC INDIR+1

DONE NOP

Here INDIR and INDIR +1 are the locations on page 0 that contain the indirect
address.
Example :

1. Let us assume (INDIR) = 80,, and (INDIR + 1) = 4C,,, so that the initial
base address is 4C80, . If the loop refers to the address (INDIR), Y, the effective
address is (INDIR+1) (INDIR) + Y or 4C80,, + (Y). When Y = FF,, the
effective address is

4C80,, + (Y) = 4C80,¢ + FFs = 4D7F

The sequence shown above for incrementing the index and the indirect address
produces the results '

Y)=()+1=00
(INDIR+1) = (INDIR+1) = 1 =4D

CHAPTER 3: COMMON PHCGRAMMING ERRORS 1 47

The effective address for the next iteration will be

4D8016 + (Y) = 4D8016 = 00]6 = 4D8016

which is the next higher address in the normal consecutive sequence.

IMPLICIT EFFECTS

Some of the implicit effects you should remember are

- The changing of the Negative and Zero flags by load and transfer instruc-
tions, such as LDA, LDX, LDY, PLA, TAX, TAY, TSX, TXA, and TYA.

- The dependence of the results of ADC and SBC instructions on the values of
the Carry and Decimal Mode flags.

- The special use of the Negative and Overflow flags by the BIT instruction.

The use of the memory address one larger than the specified one in the
indirect, indirect indexed, and indexed indirect addressing modes.

- The changing of the stack pointer by PHA, PHP, PLA, PLP, JSR, RTS, RTI,
and BRK. Note that JSR and RTS change the stack pointer by 2, and BRK and
RTI change it by 3.

+ The saving of the return address minus 1 by JSR and the addition of 1 to the
restored address by RTS.

+ The inclusion of the Carry in the rotate instructions ROL and ROR. The
rotation involves nine bits, not eight bits.

Examples

1. LDX $40

This instruction affects the Negative and Zero flags, so those flags will no
longer reflect the value in the accumulator or the result of the most recent opera-
tion. :

2. ADC #$%20

This instruction adds in the Carry flag as well as the immediate data (20,,). The
result will be binary if the Decimal Mode flag is cleared, but BCD if the Decimal
Mode flag is set.

3. BIT $1700

This instruction sets the Overflow flag from the value of bit 6 of memory loca-
tion 1700 . This is the only instruction that has a completely unexpected effect
on that flag.

1 48 6502 ASSEMBLY LANGUAGE SUBROUTINES

4. JMP ($1C00)

This instruction transfers control to the address in memory locations 1C00,
and 1C01,, (MSB in 1C01 ;). Note that 1C01, is involved even though it is not
specified, since indirect addresses always occupy two bytes of memory.

5. PHA

This instruction not only saves the accumulator in memory, but it also decre-
ments the stack pointer by 1.

6. RTS.

This instruction not only loads the program counter from the top two locations
in the stack, but it also increments the stack pointer by 2 and the program counter
by 1.

7. ROR A

This instruction rotates the accumulator right 1 bit, moving the former con-
tents of bit position 0 into the Carry and the former contents of the Carry into bit
position 7.

INITIALIZATION ERRORS

The initialization routines must perform the following tasks, either for the
microcomputer system as a whole or for particular routines:

. Load all RAM locations with initial values. This includes indirect addresses
and other temporary storage on page 0. You cannot assume that a memory loca-
tion contains 0 just because you have not used it.

. Load all registers and flags with initial values. Reset initializes only the Inter-
rupt Disable flag (to 1). Note, in particular, the need to initialize the Decimal
Mode flag (usually with CLD) and the stack pointer (using the LDX, TXS
sequence). '

. Load all counters and indirect addresses with initial values. Be particularly
careful of addresses on page 0 that are used in either the indirect indexed (postin-
dexed) addressing mode or the indexed indirect (preindexed) mode.

ORGANIZING THE PROGRAM INCORRECTLY

The following problems are the most common:

- Failing to initialize a register, flag, or memory location. You cannot assume

N

CHAPTER 3: COMMON PROGRAMMING ERRORS 149

that a register, flag, or memory location contains zero just because you have not
used it.

+ Accidentally reinitializing a register, flag, memory location, index, counter,
or indirect address. Be sure that your branches do not cause some or all of the
initialization instructions to be repeated. '

+ Failing to update indexes, counters, or indirect addresses. A problem here
may be one path that branches around the updating instructions or changes some
of the conditions before executing those instructions.

* Forgetting to save intermediate or final results. It is remarkably easy to
calculate a result and then load something else into the accumulator. Errors like
this are particularly difficult to locate, since all the instructions that calculate the
result work properly and yet the result itself is being lost. A common problem
here is for a branch to transfer control to an instruction that writes over the result
that was just calculated.

- Forgetting to branch around instructions that should not be executed in a
particular path. Remember, the computer will execute instructions consecutively
unless told specifically to do otherwise. Thus, it is easy for a program to acciden-
tally fall through to a section that the programmer expects it to reach only via a
branch. An awkward feature of the 6502 is its lack of an unconditional relative
branch; you must either use JMP with absolute addressing or set a condition and
branch on it holding (SEC, BCS, DEST and CLV, BVC DEST).

ERROR RECOGNITION BY ASSEMBLERS

Most assemblers will immediately recognizé the following common errors:

* Undefined operation code (usually a misspelling or an omission)

* Undefined name (often a misspelling or an omitted definition)

> Illegal character (for example, a 2 in a binary number or a B in a decimal
number) ‘

- Illegal format (for example, an incorrect delimiter or the wrong register or
operand) '

+ Illegal value (usually a number too large for 8 or 16 bits)

- Missing operand :

: Double definition (two different values assigned to one name)

- Illegal label (for example, a label attached to a pseudo-operation that does
not allow a label) c

+ Missing label (for example, on an = pseudo-operation that requires one).

150 6502 ASSEMBLY LANGUAGE SUBROUTINES

These errors are generally easy to correct. Often the only problem is an error,
such as omitting the semicolon or other delimiter in front of a comment, that
confuses the assembler and results in a series of meaningless error messages.

There are, however, many common errors that assemblers will not recognize.
The programmer should be aware that his or her program may contain ‘such
errors even if the assembler does not report them. Typical examples are

. Omitted lines. Obviously, the assembler cannot identify a completely omit-
ted line unless that line contains a label or definition that is used later in the pro-
gram. The easiest lines to omit are repetitions (that is, one or more lines that are
the same or sequences that start the same) or instructions that seem to be
unnecessary. Typical repetitions. are series of shifts, branches, increments, or
decrements. Instructions that may appear unnecessary include CLC, SEC, and so
forth. _

. Omitted-designations. The assembler cannot tell if you omitted a designation
such as #, H, $, B, or % unless the omission results in an illegal character (such as
Cin a decimal number). Otherwise, the assembler will assume all addresses to be
direct and all numbers to be decimal. Problems occur with numbers that are valid
as either decimal or hexadecimal values (such as 44 or 2050) and with binary
numbers (such as 00000110).

. Misspellings that are still valid. Typical examples are typing BCC instead of

* BCS, LDX instead of LDY, and SEC instead of SED. Unless the misspelling is

invalid, the assembler has no way of knowing what you meant. Valid misspellings

are often a problem if you use similar names or labels such as XXX and XXXX,
L121 and L112, or VARI1I and VARIL

- Designating instructions as comments. If you place a semicolon at the start of
an instruction line, the assembler will treat the line as a comment. This can be a
perplexing error, since the line appears in the listing but is not assembled into
object code.

Sometimes you can confuse the assembler by entering invalid instructions. An
assembler may accept a totally iliogical entry simply because its developer never
considered such possibilities. The result can be unpredictable, much like the
results of giving someone a completely wrong number (for example, a telephone
number instead of a street address or a driver license number instead of a credit
card number). Some cases in which a 6502 assembler can go wrong are

« If you designate an impossible register or addressing mode. Some assemblers
will accept instructions like INC A, LDA (840),X, or LDY BASE,Y. They will
produce erroneous object code without any warning.

. If you enter an invalid digit, .such as Q in a decimal or hexadecimal number
or 7 in a binary number. Some assemblers will assign values to such erroneous
digits in an aribitrary manner.

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 51

- If you enter an invalid operand such-as LDA #$HX. Some assemblers will
accept this and generate incorrect code. .

The assembler will recognize only errors that its developer anticipated. Pro-
grammers are often able to make mistakes that the developer never imagined,
much as automobile drivers are often capable of performing maneuvers that
never occurred in the wildest dreams of a highway designer or traffic planner.
Note that only a line-by-line hand checking of the program will find errors that
the assembler does not recognize.

IMPLEMENTATION ERRORS

Occasionally, a microprocessor’s instructions simply do not work the way the
designers or anyone else would expect. The 6502 has one implementation error
that is, fortunately, quite rare. The instruction JMP ($XXFF) where the Xs
represent any page number, does not work correctly. One would expéct this
instruction to obtain the destination address from memory locations XXFF and
(XX +1)00. Instead, it apparently does not increment the more significant byte
of the indirect address; it therefore obtains the destination address from memory
locations XXFF and XX00. For example, JMP ($1CFF) will jump to the address
stored in memory locations 1CFF ((LSB) and 1C00,, (MSB), surely a curious
outcome. Most assemblers expect the _programmer to ensure that no indirect
jumps ever obtain their destination addresses across page boundaries.

COMMON ERRORS IN I/0 DRIVERS

Most errors in 1/0 drivers involve both hardware and software, so they are
often difficult to categorize. Some mistakes you should watch for are

- Confusing input ports and output ports. Many 1/0 interfaces use the READ/
WRITE line for addressing, so that reading and writing the same memory address
results in operations on different physical registers. Even when this is not done, it
may still be impossible to read back output data unless it is latched and buffered.

- Attempting to perform operations that are.physically impossible. Reading
data from an output device (such as a display) or sending data to aninput device
(such as a keyboard) makes no physical sense. However, accidentally using the
wrong address will cause no assembly errors; the address, after all, is valid and the
assembler has no way of knowing that certain operations cannot be performed on
it. Similarly, a program may attempt to save data in a nonexistent address or in a
ROM.

152 6502 ASSEMBLY LANGUAGE SUBROUTINES

- Forgetting implicit hardware effects. Sometimes transferring data to or from
a port will change the status lines automatically, particularly if you are using a
6520 or 6522 parallel interface. Even reading or writing a port while debugging a
program will change the status lines. Be particularly careful of instructions like
comparisons and BIT which read a memory address even though they do not
change any registers, and instructions like decrement, increment, and shift which
both read and write a memory address (the actual operation, of course, takes
place inside the processor). -

. Reading or writing without checking status. Many devices can accept or pro-
vide data only when a status line indicates they are ready. Transferring data to or
from them at other times will have unpredictable effects.

- Ignoring the differences between input and output. Remember that an input
device normally starts out in the not ready state — it has no data available
although the computer is ready to accept data. On the other hand, an output
device normally starts out in the ready state, that is, it could accept data but the
computer usually has none to send it. In many situations, particularly when using
6520, 6522, 6551, or 6850 devices, you may have to disable the outputs initially
or send a null character (something that has no effect) to each output port just to
change its state from ready to not ready initially.

- Failing to keep copies of output data. Remember that you may not be able to
read the data back from the output port. If you need to repeat it later as part of
repeating a transmission that was incorrectly received, change part of it (turn on

. or off one of several indicator lights attached to the same port), or save it as part
of the interrupted status (the data is the current priority level). You must save a
copy in memory. The copy must be updated every time the actual data is changed.

. Reading data before it is stable or while it is changing. Be sure that you
understand exactly when the input device is guaranteed to produce stable data. In
the case of switches that may bounce, you may want to sample them twice (more
than a debouncing time apart) before taking any action. In the case of keys that
may bounce, you may want to take action only when they are released rather than
when they are pressed. The action on release also forces the operator to release
the key rather than holding it down. In the case of persistent data (such as in
serial 1/0), you should center the reception, that is, read the data near the centers
of the pulses rather than at the edges where the values may be changing.

- Forgetting to reverse the polarity of data being transferred to or from devices
that operate in negative logic. Many simple I/0 devices, such as switches and dis-
plays, use negative logic. A logic 0 means that a switch is closed or a display is lit.
Common ten-position switches or dials also often produce data in negative logic,
as do many encoders. The solution is simple — complement the data (using EOR
#$FF) after reading it or before sending it.

s

CHAPTER 3: COMMON PROGRAMMING ERRORS 1D 3

» Confusing actual I/O ports with registers that are inside I/0 devices. Pro-
grammable 1/0 devices, such as the 6520, 6522, 6551, and 6850, have control or
command registers which determine how the device operates, and status registers
that reflect the current state of the device or the transfer. These registers are
inside the 1/0 devices; they are not connected to peripherals. Transferring data to
or from status or control registers is not the same as transferring data to or from
actual 1/0 ports.

- Using bidirectional ports improperly. Many devices, such as the 6520, 6522,
6530, and 6532, have bidirectional I/0 ports. The ports (and perhapseven
individual lines) can be used either as inputs or outputs. Normally, resetting the
computer to avoid initial transients makes these ports inputs, so you must
explicitly change them to outputs if necessary. Be cautious when reading bits or
ports that are designated as outputs or writing into bits or ports that are desig-
nated as inputs. The only way to determine what will happen is to read the docu-
mentation for the specific device.

- Forgetting to clear status after performing an 1/0 operation. Once the pro-
cessor has read data from an input port, that port should revert to the not ready
state. Similarly, once the processor has written data into an output port, that port
should revert to the not ready state. Some 1/0 devices change the status of their
ports automatically after input or output operations, but others either do not or
(as in the 6520) change status automatically only after input operations. Leaving
the status set can result in an endless loop or highly erratic operation.

COMMON ERRORS IN >
INTERRUPT SERVICE ROUTINES

Many interrupt-related errors involve both hardware and software, but some
of the common mistakes include the following:

- Failing to reenable interrupts during the service routine. The 6502 processor
automatically disables interrupts after accepting one. It does reenable interrupts
when RTI is executed, since RTI restores the status register from the stack.

- Failing to save and restore registers. The 6502 does not automatically save
any registers except the program counter and the status register. So the
accumulator, index registers, and scratchpad locations must be saved explicitly in
the stack.

- Saving or restoring registers in the wrong order. Registers must be restored
in the opposite order from that in which they were saved.

.

1 54 6502 ASSEMBLY LANGUAGE SUBROUTINES

- Enabling interrupts before establishing priorities and other parameters of the
interrupt system.

- Forgetting that the response to an interrupt includes saving the status
register and the program counter at the top of the stack. The status register is on
top and the program counter value is the actual return address, so the situation
differs from subroutines in which the return address minus 1 is normally at the
top of the stack.

- Not disabling the interrupt during multibyte transfers or instruction
sequences that cannot be interrupted. In particular, you must avoid partgal updat-
ing of data (such as time) that an interrupt service routine may use. In general,
interrupts should be disabled when the main program is changing memory loca-
tions that it shares with interrupt service routines.

- Failing to reenable the interrupt after a sequence that must run with inter-
rupts disabled. A corollary problem here is that you do not want to enable inter-
rupts if they were not enabled when the sequence was entered. The solution is to
save the previous state of the Interrupt Disable flag (using PHP) before execut-
ing the sequence and restore the previous state (using PLP) afterward. Note,
however, that PLP restores the entire status register.

- Failing to initialize or establish the value of the Decimal Mode flag. An inter-
rupt service routine should not assume a particular value (0) for the D flag.
Instead, it should initialize that flag with CLD or SED if it executes ADC or SBC
instructions. There is no need to save or restore the old D flag since that is done
automatically as part of the saving and restoring of the status register. Initializing
the D flag avoids problems if the service routine is entered from a program that
runs with the D flag set.

- Failing to clear the signal that caused the interrupt. The service routine must
clear the interrupt even if it does not require an immediate response or any input
or output operations. Even when the processor has, for example, no data to send
to an interrupting output device, it must still either clear the interrrupt or disable
it. Otherwise, the processor will get caught in an endless loop. Similarly, a real-
time clock interrupt will typically require no servicing other than an updating of
time, but the service routine still must clear the clock interrupt. This clearing may
involve reading a 6520 or 6522 1/0 port or timer.

- Failing to communicate with the main program. The main program will not
realize that the interrupt has been serviced unless it is informed explicitly. The
usual way to inform the main program is to have the interrupt service routine
change a flag that the main program can examine. The main program will then
know that the service routine has been executed. The procedure is comparable to
the practice of a postal patron raising a flag to indicate that he or she has mail to be
picked up. The postman lowers the flag after picking up the mail. Note that this

i

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 DB

simple procedure means that the main program must examine the flag often
enough to avoid missing data or messages. Of course, the programmer can always
provide an intermediate storage area (or buffer) that can hold many data items.

- Failing to save and restore priority. The priority of an interrupt is often held
in a write-only register or in a memory location. That priority must be saved just
like the registers and restored properly at the end of the service routine. If the
priority register is write-only, a copy of its contents must be saved in memory.

Introduction to the
Program Section

The program section contains sets of assembly language subroutines for the
6502 microprocessor. Each subroutine is documented with an introductory sec-
tion and comments; each is followed by at least one example of its use. The
introductory material contains the following information:

1. Purpose of the routine
Procedure followed
Registers used
Execution time
Program size

Data memory required
Special cases

Entry conditions

©® N AN

Exit conditions

._.
e

Examples

We have made each routine as general as possible. This is most difficult in the
case of the input/output (I/0) and interrupt service routines described in Chap-
ters 10 and 11, since in practice these routines are always computer-dependent.
In such cases, we have limited the computer dependence to generalized input and
output handlers and interrupt managers. We have drawn specific examples there
from the popular Apple II computer, but the general principles are applicable to
other 6502-based computers as well.

In all routines, we have used the following parameter passing techniques:

1. A single 8-bit parameter is passed in the accumulator. A second 8-bit
parameter is passed in index register Y.

167

158 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Asingle 16-bit parameter is passed in the accumulator and indéx register Y
with the more significant byte in the accumulator. An accompanying 8-bit
parameter is passed in index register X.

3. Larger numbers of parameters are passed in the stack, either directly or
indirectly. We assume that subroutines are entered via a JSR instruction that
places the return address at the top of the stack, and hence on top of the
parameters.

Where there has been a choice between execution time and memory usage, we
have chosen the approach that minimizes execution time. For example, in the
case of arrays that are more than 256 bytes long, it is faster to handle the full
pages, then handle the remaining partial page separately, than to handle the
entire array in a single loop. The reason is that the first approach can use an 8-bit
counter in an index register, whereas the second approach requires a 16-bit
counter in memory.

We have also chosen the approach that minimizes the number of repetitive
calculations. For example, in the case of array indexing, the number of bytes be-
tween the starting addresses of elements differing only by one in a particular
subscript (known as the size of that subscript) depends only on the number of
bytés per element and the bounds of the array. Thus, the sizes of the various
subscripts can be calculated as soon as the bounds of the array are known; the
sizes are therefore used as parameters for the indexing routines, so that they need
not be calculated each time a particular array is indexed.

As for execution time, we have specified it for most short routines. For longer
routines, we have given an approximate execution time. The execution time of
programs involving many branches will obviously depend on which path is
followed in a particular case. This is further complicated for the 6502 by the fact
that branch instructions themselves require different numbers of clock cycles
depending on whether the branch is not taken, taken within the current page, or
taken across a page boundary. Thus, a precise execution time is often impossible
to define. The documentation always contains at least one typical example show-
ing an approximate or maximum execution time.

Our philosophy on error indications and special cases has been the following:

1. Routines should provide an easily tested indicator (such as the Carry flag)
of whether any errors or exceptions have occurred.

2. Trivial cdses, such as no elements in an array or strings of zero length,
should result in immediate exits with minimal effect on the underlying data.

3. Misspecified data (such as a maximum string length of zero or an index
beyond the end of an array) should result in immediate exits with minimal effect
on the underlying data.

INTRODUCTION TO THE PROGRAM SECTION 159

4. The documentation should include a summary of errors and exceptions
(under the heading of “‘Special Cases’’).

5. Exceptions that may actually be convenient for the user (such as deleting
more characters than could possibly be left in a string rather than counting the
precise number) should be handled in a reasonable way, but should still be indi-
cated as errors.

Obviously, no method of handling errors or exceptions can ever be completely
consistent or well suited to all applications. We have.taken the approach that a
reasonable set of subroutines must deal with this issue, rather than ignoring it or
assuming that the user will always provide data in the proper form.

The subroutines are listed as follows:

Code Conversion

4A Binary to BCD Conversion 163

4B BCD tpo Binary Conversion 166

1C Binary to Hexadecimal ASCII Conversion 168

4D Hexadecimal ASCII to Binary Conversion 171

4E Conversion of a Binary Number to a String of ASCII Decimal Digits 174
4F Conversion of a String of ASCII Decimal Digits to a Binary Number 180
4G Lower-Case ASCII to Upper-Case ASCII Conversion 185

4H ASCIlto EBCDIC Conversion 187

4] EBCDIC to ASCII Conversion 190

Array Manipulation and Indexing

SA MemoryFill 193

SB Block Move 197

5C One-Dimensional Byte Array Indexing 204
5D One-Dimensional Word Array Indexing 207
SE Two-Dimensional Byte Array Indexing 210
SF Two-Dimensional Word Array Indexing 215
5G N-Dimensional Array Indexing 221

Arithmetic

6A 16-Bit Addition 230

6B 16-Bit Subtraction 233
6C 16-Bit Multiplication 236
6D 16-Bit Division 240

160 6502 ASSEMBLY LANGUAGE SUBROUTINES

6E
" 6F
6G
6H
6l
6J
6K
6L
6M
6N
60

16-Bit Comparison 249

Multiple-Precision Binary Addition 253
Multiple-Precision Binary Subtraction 257
Multiple-Precision Binary Multiplication: 261
Multiple-Precision Binary Division 267
Multiple-Precision Binary Comparison 275
Multiple-Precision Decimal Addition 280
Multiple-Precision Decimal Subtraction 285
Multiple-Precision Decimal Multiplication 290
Multiple-Precision Decimal Division 297
Multiple-Precision Decimal Comparison 305

Bit Manipulation and Shifts

TA
B
1C
7D
7E
TF
7G
TH
7

7)

Bit Set 306

Bit Clear 309

Bit Test 312

Bit Field Extraction 315

Bit Field Insertion 320

Multiple-Precision Arithmetic Shift Right 325
Multiple-Precision Logical Shift Left 329
Multiple-Precision Logical Shift Right 333 -
Multiple-Precision Rotate Right 337
Multiple-Precision Rotate Left 341

String Manipulation

8A
8B
8C
8D
8E
8F

String Comparison 345

String Concatenation 349

Find the Position of a Substring 355
Copy a Substring from a String 361
Delete a Substring from a String 368
Insert a Substring into a String 374

Array Operations

9A
9B
- 9C
9D
9E
9F

8-Bit Array Summation 382

16-Bit Array Summation 385

Find Maximum Byte-Length Element 389
Find Minimum Byte-Length Element 393
Binary Search 397

Bubble Sort 403

9G
9H

" INTRODUCTION TO THE PROGRAM SEcTiIoN 161

RAM Test 407
Jump Table 415

Input/Output

10A
10B
10C
10D
10E
10F
10G
10H

Read a Line of Characters from a Terminal 418
Write a Line of Characters to an Output Device 425
Generate Even Parity 428

Check Parity 431

CRC-16 Checking and Generation 434

I/0 Device Table Handler 440

Initialize I/0 Ports 454

Delay Milliseconds 460

Interrupts

11A
11B
11C
11D

Unbuffered Interrupt-Driven Input/Output Using a 6850 ACIA 464
Unbuffered Interrupt/Driven Input/Output Using a 6522 VIA 472
Buffered Interrupt-Driven Input/Output Using a 6850 ACIA 480
Real-Time Clock and Calendar 490

Bihary to BCD Conversion (BN2BCD) |

4A

Converts one byte of binary data to two
bytes of BCD data.

Procedure: The program subtracts 100
repeatedly from the original data to deter-
mine the hundreds digit, then subtracts ten
repeatedly from the remainder to determine
the tens digit, and finally shifts the tens digit
left four positions and combines it with the
ones digit.

Registers Used: All

Execution Time: 133 cycles maximum, depends
on the number of subtractions required to deter-
mine the tens and hundreds digits.

Program Size: 38 bytes

Data Memory Required: One byte anywhere in
RAM (address TEMP).

Entry Conditions

Binary data in the accumulator.

Exit Conditions

Hundreds digit in the accumulator
Tens and ones digits in index register Y.

Examples
1. Data: (A) = 6E, (110 decimal) 2. Data: - (A) = B7, (183 decimal)
Result: (A) = 01,4 (hundreds digit) Result: (A) = 01,4 (hundreds digit)
(Y) = 10, (tens and ones digits) (Y) = 83,¢ (tens and ones digits)
H ;
i i
H i
i i
; Title Binary to BCD conversion ;
H Name: BN2BCD H
i H
Purpose: Convert one byte of binary data to two

Entry: Register A

Exit: Register A
Register Y

“e W % Ne we Ne %o we we

bytes of BCD data
binary data

high byte of BCD data

low

byte of BCD data

w8 we me s e Mo we e e

-
=}]
w

164 coDpE CONVERSION

- me ws we e we we we

BN2BCD:

D10OLP:

D1OLP:

;DATA
TEMP:

Registers used: All §

Time: 133 cycles maximum
Size: Program 38 bytes
Data 1 byte

e we wa ma we we we we

CALCULATE 100'sS DIGIT
DIVIDE BY 100

~ we we we

Y = QUOTIENT
A = REMAINDER
LDY #0FFH ;START QUOTIENT AT -1
SEC ;SET CARRY FOR INITIAL SUBTRACTION
INY ;ADD 1 TO QUOTIENT
SBC $#100 ;SUBTRACT 100
BCS D10OLP ;BRANCH IF A IS STILL LARGER THAN 100
ADC $#100 ;ADD THE LAST 100 BACK
TAX ;SAVE REMAINDER
TYA
PHA ;SAVE '100'S DIGIT ON THE STACK
TXA ;GET REMAINDER

CALCULATE 10'S AND 1'S DIGITS

DIVIDE REMAINDER OF THE 100'sS DIGIT BY 10
Y = 10'S DIGIT

A = 1'S DIGIT

n. ws we =

LDY #0FFH ;START QUOTIENT AT -1

SEC ;SET CARRY FOR INITIAL SUBTRACTION
INY ;ADD 1 TO QUOTIENT

SBC $10

BCS D1OLP ;BRANCH IF A IS STILL LARGER THAN 10
ADC $10 ;ADD THE LAST 10 BACK

;COMBINE 1'S AND 10'S DIGITS

STA TEMP ;SAVE 1'S DIGIT

TYA ;GET 10'S DIGIT

ASL A

ASL A

ASL A

ASL A ;MOVE 10'S TO HIGH NIBBLE OF A

ORA TEMP ;OR IN THE 1'S DIGIT

;RETURN WITH Y = LOW BYTE A = HIGH BYTE

TAY ;PLACE IN REG Y

PLA ;GET 100'S DIGIT

RTS

.BLOCK 1 ; TEMPORARY USED TO COMBINE 1'S AND 10'S DIGITS

- we we we e

SC0401:

4A BINARY TO BCD CONVERSION (BN2BCD}

SAMPLE EXECUTION:

:CONVERT OA HEXADECIMAL TO 10 BCD

LDA #0AH

JSR BN2BCD

BRK ;A=0, Y=10H
;CONVERT FF HEXADECIMAL TO 255 BCD
LDA #$0FFH

JSR BN2BCD .

BRK ;A=02H, Y=55H
;CONVERT U HEXADECIMAL TO 0 BCD

LDA #0

JSR BN2BCD

BRK ;A=0, Y=0

.END

165

~e we we wo wa

BCD to Binary Conversion (BCD2BN) 4B

Converts one byte of BCD data to one
byte of binary data. Registers Used: A, P, Y
Procedure: The program masks off the Execution Time: 38 cycles
more significant digit, multiplies it by ten Program Size: 24 bytes
using shifts (10 = 8 + 2, and multiplying by Data Memory Required: One byte anywhere in
eight or by two is equivalent to three or one RAM (Address TEMP).
left shifts, respectively), and adds the pro-

duct to the less significant digit.

Registers used: A,P,Y

Entry Conditions Exit Conditions
BCD data in the accumulator. Binary data in the accumulator.

- Examples
1. Data: (A) =99 2. Data: (A) =23

Result: (A) = 63, = 99 Result: (A) =17, =23,

H ;
; Title BCD to binary conversion ;
H Name: BCD2BN : i
; Purpose: Convert one byte of BCD data to one i
; byte of binary data H
; Entry: Register A = BCD data ;
; Exit: Register A = Binary data ;

Time: 38 cycles

-
(= 2]
N

4B BCD TO BINARY CONVERSION (BCD2BN} 1 67

Size: Program 24 bytes
Data 1 byte

~e wa %o we we
~e wo wme we we

BCD2BN:

;MULTIPLY UPPER NIBBLE BY 10 AND SAVE IT

; TEMP := UPPER NIBBLE * 10 WHICH EQUALS UPPER NIBBLE * (& + 2)

TAY ;SAVE ORIGINAL VALUE

AND #0FOH ;GET UPPER NIBBLE

LSR a ;DIVIDE BY 2 WHICH = UPPER NIBBLE * 8

STA TEMP ;SAVE * 8

LSR A ;DIVIDE BY 4 .

LSR A ;DIVIDE BY 8: A = UPPER NIBBLE * 2

CLC

ADC TEMP

STA TEMP ;REG A = UPPER NIBBLE * 10

TYA ;GET ORIGINAL VALUE

AND #0FH ;GET LOWER NIBBLE

CLC

ADC TEMP ;ADD TO UPPER NIBBLE

RTS
; DATA
TEMP: .BLOCK 1
; ;
i ;
: SAMPLE EXECUTION: ;
; ;
; ;
SC0402:

;CONVERT 0 BCD TO 0 HEXADECIMAL

LDA $0 ,

JSR BCD2BN

BRK ;A=0

;CONVERT 99 BCD TO 63 HEXADECIMAL

LDA #099H

JSR BCD2BN

BRK ;A=63H

;CONVERT 23 BCD TO 17 HEXADECIMAL

LDA #23H ’

JSR BCD2BN

BRK ;A=17H

.END

Binary to Hexadecimal ASCII Conversion>

(BN2HEX)

4C

Converts one byte of binary data to two
ASCII characters corresponding to the two
hexadecimal digits.

Procedure: The program masks off each
hexadecimal digit separately and converts it
to its ASCII equivalent. This involves a sim-
ple addition of 30, if the digit is decimal. If
the digit is non-decimal, an additional factor

Registers Used: All

Execution Time: 77 cycles plus three extra cycles
for each non-decimal digit.

Program Size: 31 bytes

Data Memory Required: None

of seven must be addéd to handle the break
between ASCII 9 (39,,) and ASCIT A (41,)).

Entry Conditions

Binary data in the accumulator.

Exit Conditions

ASCII equivalent of more significant
héxadecimal digit in the accumulator

ASCII equivalent of less significant
hexadecimal digit in index register Y.

Examples
1. Data: (A) =FBy

Result: (A) — 46,5 (ASCII F)

2. Data: (A) =59,

Result: (A) = 35,4 (ASCII 5)

~e wa ws we We W e ws

ws %4 e me me wa o we o we

Entry: Register A =
Exit: Register A =
Register Y =

168

Title Binary to hex ASCII
Name: BNZ2HEX
Purpose: Convert one byte of binary data to

two ASCII characters

“e me w8 we Ne we we we

Binary data

+ we we we we we

’

First ASCII digit, high order value;
Second ASCII digit, low order value;

4C BINARY TO HEXADECIMAL ASCIl CONVERSION (BN2HEX) 169

Registers used: All
Time: Approximately 77 cycles

Size: Program 31 bytes

Ne np we we wp wE we e
'me we wa we wa we e e

BN2HEX:
;CONVERT HIGH NIBBLE
TAX . ;SAVE ORIGINAL VALUE
AND #0F OH ;GET HIGH NIBBLE
LSR A
LSR A
LSR A
LSR A MOVE TO LOWER NIBBLE
JSR NASCII ;CONVERT TO ASCII
PHA ;SAVE IT ON THE STACK
;CONVERT LOW NIBBLE
TXA
AND #0FH ;GET LOW NIBBLE
JSR NASCII ;CONVERT TO ASCII
TAY ;LOW NIBBLE TO REG Y
PLA ;HIGH NIBBLE TO REG A
RTS

’

;SUBROUTINE NASCII

; PURPOSE: CONVERT A HEXADECIMAL DIGIT TO ASCIIL
;ENTRY: A BINARY DATA IN LOWER NIBBLE

;EXIT: A ASCII CHARACTER

sREGISTERS USED: A,P

.
’

NASCII:

CMP $10

BCC NAS1 sBRANCH IF HIGH NIBBLE < 10

CLC

ADC #7 ;ELSE ADD 7 SO AFTER ADDING 'O' THE

; CHARACTER WILL BE IN 'A'..'F'

NAS1:

ADC #'0! ;MAKE A CHARACTER

RTS

SAMPLE EXECUTION:

~ we we we owe
me we we we we

170 cope conveRsion

SC0403:
;CONVERT 0 TO '00°'
LDA #0
JSR BN2HEX
BRK ;A='0'=30H, Y='0'=30H
;CONVERT FF HEX TO 'FF'
LDA #0FFH
JSR BN2HEX
BRK ;A='F '=46H, Y='F'=46H
;CONVERT 23 HEX TO '23'
LDA $23H
JSR BN2HEX
BRK ;A='2'=32H, Y='3'=33H

.END

Hexadecimal ASCII to Bmary Conversmn

(HEX2BN)

4D

Converts two ASCII characters (repre-
senting two hexadecimal digits) to one byte
of binary data.

Procedure: The program converts each
ASCII character separately to a hexadecimal
digit. This involves a simple subtraction of
30,, (ASCII zero) if the digit is decimal. If the
digit is non-decimal, an additional factor of
seven must be subtracted to handle the break
between ASCII 9 (39,,) and ASCII A (41,,).
The program then shifts the more significant
digit left four bits and combines it with the

Registers Used: A, P, Y

Execution Time: 74 cycles plus three extra cycles
for each non-decimal digit.

Program Size: 30 bytes

Data Memory Required: One byte anywhere in
RAM !(address TEMP).

less significant digit. The program does not
check the validity of the ASCII characters
(i.e., whether they are, in fact, the ASCII
representations of hexadecimal digits).

Entry Conditions

More significant ASCII digit in the
accumulator, less significant ASCII
digit in index register Y.

Exit Conditions

Binary data in the accumulator.

Examples:
1. Data: (A) = 44,, (ASCII D) 2. Data: (A) =31, (ASCII 1)
(Y) =37, (ASCI 7) (Y) = 42,, (ASCII B)
Result: (A) = D7 Result: (A) = 1By,
; Title Hex ASCII to binary :
; Name: HEX2BN ;
Purpose: Convert two ASCII characters to one

e we ws e

byte of binary data

~e e we ne

171

172 cope CONVERSION

Entry: _ Register A = First ASCII digit, high order value;
Register Y = Second ASCII digit, low order value;

’

i

Exit: Register A Binary data

Registers used: A,P,Y

e me We WE W Ws WE WE We Ne ws W we

Ne wo me ms me W ws e wp we

Time: ‘ Approximately 74 cycles
Size: Program 30 bytes
Data 1 byte
HEX2BN:
PHA sSAVE HIGH CHARACTER
TYA ;GET LOW CHARACTER
JSR A2HEX s CONVERT IT
STA TEMP ' ;SAVE LOW NIBBLE
PLA sGET THE HIGH CHARACTER
JSR A2HEX ;CONVERT 1IT
ASL A
ASL A
ASL A
ASL A ;SHIFT HIGH NIBBLE TO THE UPPER 4 BITS
ORA TEMP . ;OR IN THE LOW NIBBELE
RTS

!

;SUBROUTINE: AZ2HEX

; PURPOSE: CONVERT ASCII TO A HEX NIBBLE

;ENTRY: A = ASCII CHARACTER

;EXIT: A = BINARY VALUE OF THE ASCII CHARACTER
;REGISTERS USED: A,P

!

A2HEX: .
SEC ;SUBTRACT ASCII OFFSET
SBC $'0°
CMP $#10 .
BCC A2HEX1 ;BRANCH IF A IS A DECIMAL DIGIT
SBC $7 ;ELSE SUBTRACT OFFSET FOR LETTERS
A2HEX1:
RTS
;s DATA
TEMP: .BLOCK 1

SAMPLE EXECUTION:

~e e we w2 we
we %o we we wo

SC0404:

4D HEXADECIMAL ASCII TO BINARY CONVERSION (HEX2BN})

;CONVERT 'C7' TO C7 HEXADECIMAL

LDA $'c

LDY $'7"

JSR HEX2BN

BRK :A=C7H
;CONVERT '2F' TO 2F HEXADECIMAL
LDA §r2'

LDY $'F"

JSR HEX2BN ;A=2FH
BRK

;CONVERT '23' TO 23 HEXADECIMAL
LDA $r2

LDY 4134

JSR HEX2BN

BRK ;A=23H

.END

173

Conversion of a Binary Number to Decimal ASCII

(BN2DEC)

4E

Converts a 16-bit signed binary number
to an ASCII string, consisting of the length of
the number (in bytes), an ASCII minus sign
(if necessary), and the ASCII digits.

Procedure: The program takes the absolute
value of the number if it is negative and then
keeps dividing by ten until it produces a quo-
tient of zero. It converts each digit of'the quo-
tient to ASCII (by adding ASCII 0) and con-
catenates the digits along with an ASCII
minus sign (in front) if the original number
was negative.

Registers Used: All
Execution Time: Approximately 7,000 cycles
Program Size: 174 bytes

Data Memory Required: Seven bytes anywhere
in RAM for the return address (two byles starting
at address RETADR), the sign of the original
value (address NGFLAG), temporary storage for
the original value (two bytes starting at address
VALUE), and temporary storage for the value
mod 10 (two bytes starting at address MOD10).
Also, two bytes on page 0 for the buffer pointer
(address BUFPTR, taken as 00D0,, and 00D1,,
in the listing). This data memory does not include
the output buffer which should be seven bytes
long.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of output buffer address
More significant byte - of output buffer
address

Less significant byte of value to convert
More significant byte of value to convert

Exit Conditions
Order in buffer

Length of the string in bytes
ASCII — (if original number was negative)
ASCII digits (most significant digit first)

Examples

1. Data: Valuetoconvert = 3EB7

Result (in output buffer):
05 (number of bytes in buffer)
31 (ASCII 1)
36 (ASCII 6)
30 (ASCII 0)
35 (ASCII 5)
35 (ASCII 5)

That is, 3EB7,4 = 16055,,.

174

2. Data: Valuetoconvert = FFC8,,

Result (in output buffer):
03 (number of bytes in buffer)
2D (ASCII —)
35 (ASCII 5)
36 (ASCII 6)

That is, FFC8,, = ~5610, when considered as a
signed two’s complement number.

Titlé
Name:

s we we e e we ws we

Purpose:

Entry:

Exit:

Time:

Size:

WO WE WE MO Me WE W WS ME N N NG ME e NE WO NE e wE W we W wa wE

Registers used:

;PAGE ZERO POINTER

BUFPTR: .EQU

; PROGRAM
BN2DEC:

0DOH

;SAVE PARAMETERS

PLA
STA
PLA
STA
PLA
' STA
PLA
STA
STA
BPL
LDA
SEC
SBC
STA

RETADR
RETADR+1
VALUE
VALUE+1
NGFLAG
GETBP

#0

VALUE
VALUE

4E BINARY NUMBER TO ASCII DECIMAL STRING (BN2DEC)

Binary to decimal ASCII
BN2DEC

Convert a 16-bit signed binary number
to ASCII data

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of the output buffer address,
High byte of the output buffer address,
Low byte of the value to convert,
High byte of the value to convert

The first byte of the buffer is the length,
followed by the characters.

All
Approximately 7,000 cycles
Program 170 bytes

Data 7 bytes plus
2 bytes in page zero

;PAGE ZERO BUFFER POINTER

iSAVE LOW BYTE OF RETURN ADDRESS
iSAVE HIGH BYTE

;SAVE LOW BYTE OF VALUE

175

we e wene e we o ne s

NP Ne e Me Ne NE N M e N e ma e NE S e M8 Ne Ne we we we we we

;SAVE HIGH BYTE OF THE VALUE TO CONVERT

;SAVE MSB OF VALUE AS SIGN OF VALUE
iBRANCH IF VALUE IS POSITIVE
;ELSE TAKE ABSOLUTE VALUE (0 - VALUE)

176 CoDE CONVERSION

GETBP:

CNVERT:

DVLOOP:

DECCNT:

LDA #0

SBC VALUE+1

STA VALUE+1

PLA ;SAVE STARTING ADDRESS OF OUTPUT BUFFER
STA BUFPTR

PLA

STA BUFPTR+1

;SET BUFFER TO EMPTY

LDA #0
LDY #0 ;BUFFER[0] := 0
STA (BUFPTR) ,Y

H .
;CONVERT VALUE TO A STRING

;VALUE := VALUE DIV 10

;MOD10 := VALUE MOD 10

LDA #0

STA MOD10

STA MOD10+1

LDX $16

CLC - ;CLEAR CARRY

ROL VALUE ;SHIFT THE CARRY INTO DIVIDEND BIT O
ROL VALUE+1 ;WHICH WILL BE THE QUOTIENT

ROL MOD10 ;AND SHIFT DIVIDEND AT THE SAME TIME
ROL MOD10+1

H
;A,Y = DIVIDEND - DIVISOR

SEC

LDA MOD10

SBC $10

TAY ;SAVE LOW BYTE IN REG Y

LDA MOD10+1

SBC #0 s SUBTRACT CARRY

BCC DECCNT sBRANCH IF DIVIDEND < DIVISOR

STY MOD10 ;ELSE)

STA MOD10+1 ; NEXT BIT OF QUOTIENT IS A ONE AND SET
; DIVIDEND := DIVIDEND - DIVISOR

DEX

BNE DVLOOP

ROL VALUE ;SHIFT IN THE LAST CARRY FOR THE QUOTIENT

ROL VALUE+1

;CONCATENATE THE NEXT CHARACTER

4E BINARY NUMBER TO ASCH DECIMAL STRING (8N20E) 177

CONCH:
LDA © MOD10
CLC
ADC $'0' ;CONVERT 0..9 TO ASCII '0'..'9’
JSR CONCAT
iIF VALUE <> 0 THEN CONTINUE
LDA VALUE
ORA VALUE+1
BNE CNVERT iBRANCH IF VALUE IS NOT ZERO
EXIT:
LDA NGFLAG
BPL POS ;BRANCH IF ORIGINAL VALUE WAS POSITIVE
LDA $'- ;ELSE
JSR CONCAT ; PUT A MINUS SIGN IN FRONT
\
POS:
LDA RETADR+1
PHA
LDA RETADR
PHA
RTS sRETURN

!’

;SUBROUTINE: CONCAT

;PURPOSE: CONCATENATE THE CHARACTER IN REGISTER A TO THE

; FRONT OF THE STRING ACCESSED THROUGH BUFPTR

sENTRY: BUFPTR[0] = LENGTH

;EXIT: REGISTER A CONCATENATED (PLACED IMMEDIATELY AFTER THE LENGTH BYTE)
sREGISTERS USED: A,P,Y

’

CONCAT: |
PHA ;SAVE THE CHARACTER ON THE STACK
;MOVE THE BUFFER RIGHT ONE CHARACTER
LDY #0
LDA (BUFPTR) , Y ;GET CURRENT LENGTH
TAY
BEQ EXITMR . ;BRANCH IF LENGTH = 0
MVELP:
LDA (BUFPTR),Y sGET NEXT CHARACTER
INY
STA (BUFPTR),Y ;STORE IT
DEY
DEY : .
BNE MVELP ;CONTINUE UNTIL DONE
EXITMR:
PLA ;GET THE CHARACTER BACK FROM THE STACK
LDY - #1
STA (BUFPTR) ,Y ;STORE THE CHARACTER
LDY $#0

LDA (BUFPTR) , Y ;GET LENGTH BYTE

178 cope CONVERSION

CLC

ADC #1

STA (BUFPTR) ,Y
RTS

;DATA

RETADR: .BLOCK
NGFLAG: .BLOCK
VALUE: .BLOCK
MOD10: .BLOCK

NN HN

SAMPLE EXECUTION:

~. we we s we

; INCREMENT LENGTH BY 1
;UPDATE LENGTH

;SAVE RETURN ADDRESS
;SIGN OF ORIGINAL VALUE
:VALUE TO CONVERT
;MODULO 10 TEMPORARY

;HIGH BYTE OF BUFFER ADDRESS
;LOW BYTE BUFFER ADDRESS
;HIGH BYTE OF VALUE

;LOW BYTE OF VALUE

;CONVERT

;BUFFER SHOULD = '0'

;HIGH BYTE OF BUFFER ADDRESS
;LOW BYTE BUFFER ADDRESS
;HIGH BYTE OF VALUE

;LOW BYTE OF VALUE

;CONVERT
;BUFFER SHOULD = '32767'

'-32768"

;HIGH BYTE OF BUFFER ADDRESS
;LOW BYTE BUFFER ADDRESS

;HIGH BYTE OF VALUE

5C0405:
;CONVERT 0 TO '0'
LDA BUFADR+1
PHA
LDA BUFADR
PHA
LDA VALUE1l+1
PHA
LDA VALUE1
PHA
JSR BN2DEC
BRK

\

;CONVERT 32767 TO '32767'
LDA BUFADR+1
PHA
LDA BUFADR
PHA
LDA VALUE2+1
PHA .
LDA VALUE2
PHA
JSR BN2DEC
BRK
;CONVERT -32768 TO
LDA BUFADR+1
PHA
LDA BUFADR
PHA
LDA VALUE3+1
PHA
LDA VALUE3

PHA

;LOW BYTE OF VALUE

L .

VALUEL:
VALUEZ2:
VALUE3:
BUFADR:
BUFFER:

JSR
BRK
JMP

.WORD
-WORD
.WORD
.WORD
.BLOCK

.END

BN2DEC

SC0405

32767
-32768
BUFFER
7

4E BINARY NUMBER TO ASCII DECIMAL STRING (BN2DEC)

;CONVERT
iBUFFER SHOULD = '-32768"

;TEST VALUE 1
;TEST VALUE 2
;TEST VALUE 3
;BUFFER ADDRESS
;7 BYTE BUFFER

179

Conversion of ASCII Decimal to Binary

(DEC2BN)

4F

Converts an ASCII string consisting of
the length of the number (in bytes), a possi-
ble ASCII — or + sign, and a series of ASCII
digits to two bytes of binary data. Note that
the length is an ordinary binary number, not
an ASCII number.

Procedure: The program sets a flag if the
first ASCII character is a minus sign and skips
over a leading plus sign. It then converts each
subsequent digit to decimal (by subtracting
ASCII zero), multiplies the previous digits by
ten (using the fact that 10=8+2, so a
multiplication by ten can be reduced to left

shifts and additions), and adds the new digit

to the product. Finally, the program subtracts
the result from zero if the original number
was negative. The program exits
immediately, setting the Carry flag, if it finds
something other than a leading sign or a
decimal digit in the string.

Registers Used: All
Execution Time: 670 cycles (approximately)
Program Size: 171 bytes

Data Memory Required: Four bytes anywhere in
RAM for an index, a two-byte accumulator
(starting address ACCUM), and a flag indicating
the sign of the number (address NGLAG), two-
bytes on page zero for a pointer to the string
(address BUFPTR, taken as 00F0, and 00F1 ¢ in
the listing).

Special Cases:

1. If the string contains something other than a
leading sign or a decimal digit, the program
retu.ns with the Carry flag set to 1. The result in
registers A and Y is invalid.

2. If the string contains only a leading sign
(ASCIHl + or ASCIl —), the program returns
with the Carry flag set to 1 and a result of zero.

Entry Conditions

(A) = More significant byte of string
address

(Y) = Less significant byte of string
address

Exit Conditions‘

(A) = More significant byte of binary value
(Y) = Less significant byte of binary value

Carry flag is 0 if the string was valid; Carry
flag is 1 if the string contained an invalid
character. Note that the result is a signed
two’s complement 16-bit number.

Examples

1. Data: String consists of
04 (number of bytes in string)
31 (ASCII 1)
32 (ASCII 2)
33 (ASCII 3)

34 (ASCII &)
That is, the number is +1,234,,.

180

Result: (A) = 04, (more significant byte of
binary data)

(Y) = C2,, (less significant byte of
binary data)

That is, the number +1234,5 = 04C2,,.

2. Data:

e me we we we wa e we

TE Mo Me N ME NE Ne e NE WE ME ME NE We MO NE N %o %6 N Me e we W

String consists of

06 (number of bytes in string)

2D(ASCIH —)
33 (ASCII 3)
32 (ASC11 2)
37 (AsSCm
35 (ASCII 5)
30 (ASCI1 0)

That is, the number is —32,750,,.

4F ASCI DECIMAL STRING TO BINARY NUMBER (DEC2BN}

181

Result: (A) = 80,4 (more significant byte of binary

data)

(Y) = 12/ (less significant byte of binary

data)

That is, the number —32,750,, = 8012,,.

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

s PAGE ZERO LOCATION

BUFPTR:

i
; PROGRAM
DEC2BN:

Time:

Size:

. EQU OF OH

STA BUFPTR+1

STY BUFPTR

Decimal ASCII to binary

DEC2BN

Convert ASCII characters to two bytes of binary

data.

Register A = high byte of string address
Register Y = low byte of string adddress

The first byte of the string is the length of

the string.

Register A = High byte of the value

Register Y

Low byte of the value

IF NO ERRORS THEN
CARRY FLAG = 0

ELSE

CARRY FLAG = 1

All

Approximately 670 cycles

Program 171 bytes

Data

4 bytes plus
2 bytes in page zero

;PAGE ZERO POINTER TO STRING

SAVE THE STRING ADDRESS

e %o we ma me we we we

WO Me M ME NE NE NE NE e N WE We ME NP W We %o we we W WE e we we

182 CODE CONVERSION

s INITIALIZE

‘LDY $0

LDA (BUFPTR),Y ;GET LENGTH

TAX : ‘ ; TO REGISTER X

- LDA #1 :

STA INDEX ;INDEX :=1

LDA #0

STA ACCUM ;sACCUM := 0

STA ACCUM+1 . ,

STA NGFLAG ;SIGN OF NUMBER IS POSITIVE

;CHECK THAT THE BUFFER IS NOT ZERO

TXA

BNE INIT1 ;EXIT WITH ACCUM = O IF BUFFER IS EMPTY

JMP EREXIT ;ERROR EXIT IF NOTHING IN BUFFER
INIT1:

LDY INDEX <

LDA (BUFPTR),Y ;GET FIRST CHARACTER

CMP $'- :sIS IT A MINUS ?

BNE PLUS ;BRANCH IF NOT '-'

LDA $0FFH

STA NGFLAG ;ELSE SIGN OF NUMBER IS NEGATIVE

INC INDEX ;SKIP PAST MINUS SIGN

DEX : DECREMENT COUNT

BEQ ° EREXIT ;ERROR EXIT IF ONLY '-' IN BUFFER

JMP CNVERT :START CONVERSION
PLUS:

CMP $'+

BNE CHKDIG ;START CONVERSION IF FIRST CHARACTER IS NOT ‘4!

INC INDEX '

DEX . - _;DECREMENT COUNT, IGNORE PLUS SIGN

BEQ EREXIT ;ERROR EXIT IF ONLY '+' IN BUFFER
CNVERT:

LDY INDEX

LDA (BUFPTR),Y ;GET NEXT CHARACTER
CHKDIG: CMP $'0°

BMI EREXIT . ;ERROR IF < '0' (NOT A DIGIT)

CMP $'9'+1

BPL EREXIT :ERROR IF > '9' (NOT A DIGIT)

PHA o ;SAVE THE DIGIT ON THE STACK

; VALID DECIMAL DIGIT SO
; ACCUM := ACCUM * 10

;- = ACCUM * (8 + 2)
: = (ACCUM * 8) + (ACCUM * 2)
ASL ACCUM -
- ROL ACCUM+1 sTIMES 2
LDA . ACCUM
LDY ACCUM+1l ;SAVE ACCUM * 2
ASL = ACCUM ’
- ROL ACCUM+1
. ASL ACCUM
ROL ACCUM+1 ";TIMES '8

CLC

D2B1:

OKEXIT:

EREXIT:

EXIT:

; DATA

INDEX:
ACCUM:
NGFLAG:

~e s %o we we

ADC ACCUM
STA ACCUM
TYA

ADC ACCUM+1
STA ACCUM+1

sADD IN THE NEXT DIGIT
; ACCUM := ACCUM + DIGIT

PLA
SEC
SBC $#'0'
CLC
ADC ACCUM
STA ACCUM
- BCC D2B1
INC ACCUM+1
INC INDEX
DEX
BNE CNVERT
LDA NGFLAG
BPL OKEXIT
LDA #0
SEC
SBC ACCUM
STA ACCUM
LDA #0
SBC ACCUM+1
STA ACCUM+1

4F ASCII DECIMAL STRING TO BINARY NUMBER (DEc28N) 183
;SUM WITH * 2
;ACCUM := ACCUM * 10

:{GET THE DIGIT BACK

;CONVERT '0'..'9' TO BINARY 0..9

‘7BRANCH IF NO CARRY TO HIGH BYTE
;ELSE INCREMENT HIGH BYTE

; INCREMENT TO NEXT CHARACTER
;CONTINUE CONVERSION

;BRANCH IF THE VALUE WAS POSITIVE
;ELSE REPLACE RESULT WITH -RESULT

;GET THE BINARY VALUE AND RETURN

CLC _

BCC EXIT
SEC

LDA ACCUM+1
LDY ACCUM
RTS

.BLOCK 1
.BLOCK 2
.BLOCK 1

SAMPLE EXECUTION:

;GET HIGH BYTE OF VALUE

-7INDEX INTO THE STRING

;ACCUMULATED VALUE (2 BYTES)
;SIGN: OF NUMBER

~e we we we ws

184 ook conversioN

SC0406:
;CONVERT '1234°
LDA ADRS1+1
LDY ADRS1
JSR DEC2BN
BRK
;CONVERT '-32767"
LDA ADRS2+1
LDY ADRS2
JSR DEC 2BN
BRK
;CONVERT '-32768"'
LDA ADRS3+1
LDY ADRS3
JSR DEC2BN
BRK

Sl: .BYTE 4,'1234°

s2: .BYTE 6,'+32767"

S3: .BYTE 6,'-32768"

ADRS1: .WORD Sl

ADRS2: .WORD 52

ADRS3: .WORD S3

.END

TO 04D2 HEX

;AY = ADDRESS OF S1
:A = 04, Y = D2 HEX
TO 7FFF HEX
:AY = ADDRESS OF S2
:A = 7F, Y = PF HEX
TO 8000 HEX

;AY = ADDRESS OF §3

;A = 80 HEX, Y = 00 HEX

;ADDRESS OF Sl
;ADDRESS OF S2
;ADDRESS OF 53

Lower-Case to Upper-Case

Translation (LC2UC) 4G

Converts an ASCH lower-case letter to its
upper-case equivalent.

Procedure: The program determines from
comparisons whether the data is an ASCII
lower-case letter. If it is, the program
subtracts 20, from it, thus converting it to its
upper-case equivalent. If it is not, the pro-
gram leaves it unchanged.

Registers Used: A, P

Execution Time: 18 cycles if the original
character is valid, fewer cycles otherwise.

Program Size: 12 bytes
Data Memory Required: None

Entry Conditions

Character in the accumulator.

Exit Conditions

If the character is an ASCII lower-case
letter, the upper-case equivalent is in
the accumulator. If the character is not
an ASCII lower-case letter, the
accumulator is unchanged.

Examples
1. Data: (A) = 62,5 (ASClI b)

Result: (A) = 42, (ASCII B)

2. Data: (A) = 74,4 (ASCII V)

Result: (A) = 54,, (ASCIIT)

SO e Ns we e we we we

Entry: Register A =

e we N e e e

Title Lower case to upper case translation
Name: Lcauc
Purpose: Convert one ASCII character to upper case from

lower case if necessary.

Se Ne ve me e w4 we we

Lower case ASCII character

w5 e wa e we w»

185

186 CoDE CONVERSION

we ne ws me wa wa W we N we W

LC2UC:

EXIT:

~. we we we we

SC0407:

Exit: Register A = Upper case ASCII character if A
is lower case, else A is unchanged.

Registers used: A,P

Time: 18 cycles if A is lower case, less otherwise
Size: Program 12 bytes
Data none
CMP $#'a’
BCC $1 ;BRANCH IF < 'a'
CMP $'z'+1
BCS EXIT sBRANCH IF > 'z'
SEC
SBC #20H ;CHANGE 'a'..'z' into 'A'..'Z2’
RTS

SAMPLE EXECUTION:

;CONVERT LOWER CASE E TO UPPER CASE

LDA $'e!

JSR LC20C

BRK) : ;A='E'=45H
;CONVERT "LOWER CASE Z TO UPPER CASE
LDA $'z'

JSR LC2UC

BRK ;A='2 '=5AH
;CONVERT UPPER CASE A TO UPPER CASE A
LDA $'A'

JSR LC2UC

BRK ;A='A'=41H

.END ;OF PROGRAM

e me me We me e we na we S we

. me we e we

ASCII to EBCDIC Conversion (ASC2EB) 4H

Converts an ASCII character to its
EBCDIC equivalent.

Procedure: The program uses a simple o
table lookup with the data as the index and Z;?,%Z’;;ﬂ’lﬁgi‘?ve“ bytes, plus 128 bytes for the
address EBCDIC as the base. Printable
ASCII characters for which there are no
EBCDIC equivalents are translated to an characters without EBCDIC equivalents are
EBCDIC space (40,,); nonprintable ASCII translated to an EBCDIC NUL (00,,).

Registers Used: A, P, Y
Execution Time: 14 cycles

Data Memory Required: None

Entry Conditions Exit Conditions
ASCII character in the accumulator. EBCDIC equivalent in the accumulator.
Examples
1. Data: (A) = 35,, (ASCII 5) 3. Data: (A) =2A,, (ASCH®)
Result: (A) = F5,, (EBCDIC 5) Result: (A) = 5C,, (EBCDIC *)

2. Data: (A) =77, (ASCll w)

Result: (A) = A6, (EBCDIC w)

e e me W Ne % we ne
we w4 %o we w6 we wa ws

Title ASCII to EBCDIC conversion
Name: ASC2EB
Purpose: Convert an ASCII character to its

corresponding EBCDIC character

Entry: Register A = ASCII character

Exict: Register A = EBCDIC character

Ne wa Ne % we e we we
e e me e %o s we we

187

188 ook conversion

Registers used: A,P,Y
Time: 14 cycles

Size: Program 7 bytes
Data 128 bytes for the table

e s me e %o we e wo
e ws we me we wp we e

ASC2EB:
AND #7FH ;sBE SURE BIT 7 =0
TAY ;USE ASCII AS INDEX INTO EBCDIC TABLE
LDA EBCDIC,Y ;GET EBCDIC
RTS

;ASCII TO EBCDIC TABLE
: PRINTABLE ASCII CHARACTERS FOR WHICH THERE ARE NO EBCDIC EQUIVALENTS

; ARE TRANSLATED TO AN EBCDIC SPACE (040H) , NON PRINTABLE ASCII CHARACTERS
;: WITH NO EQUIVALENTS ARE TRANSLATED TO A EBCDIC NUL (00OH)

EBCDIC:
!

NUL SOH STX ETX EOT ENG ACK BEL sASCII

.BYTE 000H,000H,000H,022H,037H,000H,000H, 000H ;EBCDIC

; BS HT LF vT FF CR SO SI ;ASCII
.BYTE OOOH,OZBH,025H,000H,000H,02DH,000H,000H ;s EBCDIC

H DLE DCl DC2 DC3 DC4 NAK SYN ETB sASCII
.BYTE 000H,000H,000H,000H,037H,000H,000H,000H ;EBCDIC

; CAN EM SUB ESC FS GS RS Vs ;ASCII
.BYTE 000K,000H,000H,000H,000H,000H,000H, OOOH ;EBCDIC

; SPACE ! " ‘4 $ - % & ;ASCII
.BYTE 040H, OSAH,07EH,04OH,OSBH,06CH,050H,07CH ;EBCDIC

H () * + ’ - . / $ASCII
.BYTE 04DH,05DH,05CH,04EH,06BH,060H,04BH,061H :EBCDIC

; 1 3 4 6 7 ;ASCII
.BYTE OFOH OF1H, 0F2H 0F3H 0F4H 0F5H OF6H, OF 7H ;EBCDIC

; 8 9 > ? ;sASCII
.BYTE OF8H, OF9H, 07AH OSEH 04CH 07DH 06EH, 06FH +EBCDIC

; @ A B C D E F G ;ASCII
.BYTE 07BH, 0C1H,0C2H, 0C3H,0C4H,0C5H, 0C6H, 0C7H ;EBCDIC

H H I J K L M N [0} ;ASCII
.BYTE 0C8H, 0C9H, 0D1H, OD2H, 0D3H, 0D4H, ODSH, OD6H ;EBCDIC

; P Q R s T U \' w sASCII
.BYTE 0D7H, 0D8H, OD9H,O0E2H, 0E3H, OE4H, OESH OE6H . sEBCDIC

H X Y 2 [\] <= sASCII
.BYTE 0E7H,OEBH,OESH,040H,040H,040H,06AH,040H ;EBCDIC

; a b c d e f g ;ASCII-
.BYTE 07CH,081H,082H,083H,084H,085H,086H, 087H ;EBCDIC

; h i j k 1 m n ;ASCII
.BYTE 088H,089H, 0915 092H 093H 094H,095H, 096H +EBCDIC

H P q u v ;ASCII
.BYTE 097H 098H 099H OAZH 0A3H 0A4H, OAS5H, 0A6H ;EBCDIC

{ | } ~ DEL :ASCII
.BYTE 0A7H OABH 0A9H 040H, 04FH,040H,05FH,007H :EBCDIC

4H ASCII TO EBCDIC CONVERSION (asc2es) 189

SAMPLE EXECUTION:

~e we we we we
e we we we we

SC0408: ’
;CONVERT ASCII ‘A’ -
LDA $'a’ ;ASCII 'A!
JSR ASC2EB
BRK ;EBCDIC 'A' = 0ClH
;CONVERT ASCII '1'
LDA . #'1 ;ASCII '1°
JSR ASC2EB
BRK) ;EBCDIC 'l' = OF1H
;CONVERT ASCII 'a'
LDA ¥'a’ ;ASCII ‘'a’
JSR ASC2EB
BRK ;EBCDIC 'a' = 081H

.END ;END PROGRAM

EBCDIC to ASCII Conversion (EB2ASC) 41

Converts an EBCDIC character to its
ASCII equivalent.

Procedure: The program uses a simple Program Size: Five bytes, plus 256 bytes for the
table lookup with the data as the index and conversion table. '
address ASCII as the base. Printable
EBCDIC characters for which there are no —
ASCII equivalents are translated to an ASCII ters without ASCII equivalents are translated
space (20,,); nonprintable EBCDIC charac- toan ASCIINUL (00,).

Registers Used: A, P, Y

Execution Time: 12 cycles

Data Memory Required: None

Entry Conditions Exit Conditions

EBCDIC character in the accumulator. ASCII equivalent in the accumulator.
Examples
1. Data: (A) = 85, (EBCDICe) 2. Data: - (A) = 4E,, (EBCDIC +)
Result: (A) = 65,4 (ASCll e} Result: (A) = 2B, (ASCII +)

i i
; ;
i H
i i
H Title EBCDIC to ASCII conversion ;
H Name: EB2ASC :

Purpose: Convert an EBCDIC character to its

corresponding ASCII character
Entry: Register A = EBCDIC éharacter
Exit: Register A = ASCII character

Registers used: A,P,Y

Time: 12 cycles

e we we Ws WE ws We W we we N& S

Ne w5 Ne we me wp w6 w W e we W

-
7]
o

“s % we we

EB2ASC:

SCII:

~ - e ~ ~ e - ~ ~ - e ~e ~e 9 ne w0 we ne

-

~

~

Size:

TAY
LDA
RTS

+BYTE
.BYTE
.BYTE
.BYTE
.BYTE
«BYTE
.BYTE
.BYTE
«BYTE
.BYTE
.BYTE
.BYTE
«BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE

41 EBCDIC TO ASCIt CONVERSION (EB2ASC)

Program 5 bytes
Data 256 bytes for the table

/

ASCII,Y ;TRANSLATE

EBCDIC TO ASCII TABLE

PRINTABLE EBCDIC CHARACTERS FOR WHICH THERE ARE
ARE TRANSLATED TO AN ASCII SPACE (020H), NON PRI
WITH NO EQUIVALENTS ARE TRANSLATED TO A ASCII NU

NUL TAB DEL
OOOH,OOOH,QOOH,0008,000H,009H,000H,07FH

000H,000H,000H,000H, 000H, 000H, 000H, 000H

NEW LINE
OOOH,OOOH,OOOH,000H,000H,00DHL000H,000H

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
ETX LF
OOOH,003H,OOOH,000H,000H,OOAH,OOOH,OOOH
TAB CR
OOOH,000H,000H,009H,000H,00DH,OOOH,OOOH
EOT
OOOH,OOOH,OOOH,OOOH,000H,000H,000H,004H

OUOH,QOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
SPACE
' ,OOOH,OOOH,OOOH,OOOH,OUOH,OOOH,OUOH
BRITISH § . < (+ |
000H, 000H, ' Pt JUEY
&

‘! ,000H,000H,000H,OOOH,OOOH,OOOH,OOOH

! *) : i
000H,G00H, '} ,'$" AL L N Y
- /

'=','/' ,000H,000H,000H,000H,000H, 000H
- ' 8 ~.- > ?
000H,000H,""* ,',' ,'%' ,040H,'>' ,'2'

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH
. ' = "

: e
000H,000H,':* ,'@' ,''v ,t=t '"', 000H
a b c d e £ g
OOOH,'a' ,'b' 'lcl 'Id! 'lel 'Dfl '190
h i
‘h' ,'i’ »000H,000H, 000H, 000H, 0OOH, 0004
j k 1 m n o P
OOOH'Ijl ’lkl ’|1| ’lml ’vnv ’lol 'lpl
q r

NO ASCII EQUIVALENTS
NTABLE EBCDIC CHARACTERS
L (000H)

;EBCDIC
;ASCII
;s EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
sASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;sASCII
;EBCDIC
;ASCII
;EBCDIC
sASCII
1EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
sEBCDIC
;ASCII
;EBCDIC
sASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
;EBCDIC
;ASCII
sEBCDIC
;ASCII
sEBCDIC
$ASCII
sEBCDIC

191

~e we we s

192 CODE CONVERSION

- - -

-

. = - ~ ~e -

-

w6 we we ws we

SC0409:

~ .BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE

.BYTE

.BYTE

‘q' ,'r’ ,000H,000H,000H,000H,000H, 000H

S t

u

000H,000H,'s' ,'t' ,'u’

Yy
lyl

v

'lvl

w

'
P A

X

lxl

z
'zt ,OOOH,OOOH,OOOH,UOOH,OOOH,OOOH

OOOH,000H,000H,OOOH,OOOH,OOOH,OOOH,OOOH

000H

000H
H
‘HY

000H
Q
lQl

000H
b4

tyt
0

0"

,000H, 000H, 000H , 000H, 000K
A B E

C
'IAI 'IBI 'lcl ’

D
'p!

'IEI

,000H
F
J'E!

, 000H
G
LG

I
NI ,OQOH,OOOH,OOOH,OOOH,OOOH,OOOH
L M N 0 P

J K
I'J' ’|Kl 'ILI

R

,'R' ,000H,000H,
s T

,000H,'s" ,'T"

,'M'

000#H,000H,000H,000H
U v]

’lNI

,|ol

,'P!

X

Z
A ,000H,000H, 000H, 000H, 0008, 000H

1 2 3
'lll 'l2l 'l3l ’

'Iul '|Vl 'lwl' lxl
4 5 6 7
|4l 'lsl 'I6l 'I'I'

9
‘9!’ ,OOOH,OOOH,OOOH;OOUH,OOOH,OOOH,OOOH

SAMPLE EXECUTION:

;CONVERT EBCDIC 'A'

LDA #0C1H ;EBC
JSR EB2ASC

BRK ;ASC
sCONVERT EBCDIC 'l1'’

LDA $0F1H ;EBC
JSR EB2ASC

BRK ;ASC
;CONVERT EBCDIC 'a’

LDA $081H ;EBC
JSR EB2ASC

BRK ;ASC
.END ;END PROGRAM

DIC

I1 'A’

DIC

II 'l'

DIC

I1 'a

IAI

lll

4

lal

041H

0318

061H

sASCII
;sEBCDIC
sASCII
sEBCDIC
;sASCII
:EBCDIC
;ASCII
;EBCDIC
;ASCII -
;EBCDIC
sASCII
;sEBCDIC
;ASCII
;+EBCDIC
;sASCII
;sEBCDIC
;sASCII
;s EBCDIC
;ASCII
;EBCDIC
;ASCII
;sEBCDIC
;sASCII
; EBCDIC
sASCII

e me we wo we

Memory Fill (MFILL)

S5A

Piaces a specified value in each byte of a
memory area of known size, starting at a
given address. ‘

Procedure: The program fills all the whole
pages with the specified value first and then
fills the remaining partial page. This approach
is faster than dealing with the entire area in

one loop, since 8-bit counters can be used
instead of a 16-bit counter. The approach
does, however, require somewhat more
memory than a single loop with a 16-bit
counter. A size of 0000, causes an exit with
no memory changed.

Registers Used: All

Execution Time: Approximately 11 cycles per
byte plus 93 cycles overhead.

Program Size: 68 bytes

Data Memory Required: Five bytes anywhere in
RAM for the array size (two bytes starting at
address ARYSZ), the value (one byte at
address VALUE), and the return address (two
bytes starting at address RETADR). Also two
bytes on page O for an array pointer (taken as

addresses 00DO, ; and 00D1, in the listing).

Special Cases:

1. A size of zero causes an immediate exit with
no memory changed.

2. Filling areas occupied or used by the pro-
gram itself will cause unpredictable results,
Obviously, filling any part of page 0 requires cau-
tion, since both this routine and most systems
programs use that page.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Value to be placed in memory

Less significant byte of area size (in
bytes)

More significant byte of area size (in
bytes) _

Less significant byte of starting address

More significant byte of starting address

Exit Conditions

The area from the starting address through
the number of bytes given by the area size is
filled with the specified value. The area filled
thus starts at BASE and continues through
BASE + SIZE — 1 (BASE is the starting
address and SIZE is the area size).

193

194 ARRAY MANIPULATION

Examples

1. Data:

Result:

e wms we e

e ms e w8 wE w5 wS we Ne we e Se Ne wa e S Ve e We We N % %6 %6

Value = FF " 2. Data

Area size (in bytes) = 0380,
Starting address = 1AEQ,

FFl6 is placed in memory

Value'= EA | (6502 operation

code for NOP)
Area size (in bytes) = 1C65,
Starting address = E34C,

?%%?SSCS 1AEQ,, through Result: EA,is placed in memory addresses
16’ E34C through FFBO,,

Title Memory fill

Name: MFILL

Purpose: Fill an area of memory with a value

Entry: TOP OF STACK

Low byte of return address,

High byte of return address,
Value to be placed in memory,
Low byte of area size in bytes,
High byte of area size in bytes,
Low byte of starting address,
High byte of starting address

Exit: Area filled with value

Registers used: All

Time: Approximately 11 cycles per byte plus
93 cycles overhead.

Size: Program 68 bytes
Data 5 bytes plus

2 bytes in page zero

:PAGE ZERO POINTER
.EQU ODOH ;PAGE ZERO POINTER TO THE ARRAY

ARYPTR:

MFILL:

;POP THE PARAMETERS FROM THE STACK
PLA

~e N5 e w6 e me we ws we we N we N we W0 SE ~r we we we

~e me wa weve o

FULLPG:

PARTPG:

PARTLP:

EXIT:

s+ DATA
ARYSZ:
VALUE:

STA
PLA
STA

PLA
STA

PLA
STA
PLA
STA

PLA
STA
PLA
STA

LDA
PHA
LDA
PHA

!

;DO THE
LDA

LDX

BEQ

LDY

STA
INY
BNE
INC
DEX
BNE

~r e we

LDX
BEQ
LDY

STA
INY
DEX
BNE

RTS

. BLOCK
.BLOCK

RETADR

RETADR+1

VALUE

ARYS?Z

ARYSZ+1

'ARYPTR

ARYPTR+1
RETADR+1

RETADR

FULL PAGES FIRST

VALUE
ARYSZ+1
PARTPG

#0
(ARYPTR),Y

FULLPG
ARYPTR+1

FULLPG

ARYSZ
EXIT
#0

(ARYPTR) ,Y

PARTLP

2
1

5A MEMORY FILL {MFILL)

;GET THE RETURN ADDRESS

;GET FILL VALUE

;GET SIZE OF AREA

iGET STARTING ADDRESS OF AREA

;RESTORE RETURN ADDRESS

;GET VALUE FCR FILL
:X = NUMBER OF PAGES TO DO
;BRANCH IF THE HIGH BYTE OF SIZE = 0

iSTORE VALUE

;s INCREMENT TO NEXT BYTE .
;BRANCH IF NOT DONE WITH THIS PAGE
;ADVANCE TO THE NEXT PAGE

7BRANCH IF NOT DONE WITH THE FULL PAGES

DO THE REMAINING PARTIAL PAGE
REGISTER A STILL CONTAINS VALUE

195

;GET THE NUMBER OF BYTES IN THIS FINAL PAGE

;BRANCH IF LOW BYTE OF SIZE = (¢

iSTORE VALUE

; INCREMENT INDEX

i DECREMENT COUNTER

;BRANCH IF PARTIAL PAGE IS NOT DONE

iNUMBER OF BYTES TO INITIALIZE
;VALUE TO INITIALIZE ARRAY WITH

196 ARRAY MANIPULATION

RETADR: .BLOCK

~e %o e we we

2

SAMPLE EXECUTION

SC0501:

;FILL A SMALL BUFFER

LDA BF1ADR+1

PHA

LDA BF 1ADR

PHA

LDA BF1SZ+1

PHA

LDA BF1S2

PHA

LDA #0

PHA

JSR MFILL

BRK

sFILL A BIG BUFFER WITH

LDA BF2ADR+1

PHA

LDA BF2ADR

PHA

LDA BF2SZ+1

PHA

LDA BF2S52

PHA

LDA #0EAH

PHA

JSR MFILL

BRK

JMP SC0501
SIZEl: .EQU 47H
SIZEZz: .EQU 60U 0H
BF1ADR: .WORD BF1l
BF2ADR: .WORD BF2
BF1SZ: .WORD SIZEl
BF2S2: .WORD SIZE2
BF1l: .BLOCK SIZEl
BF2: .BLOCK SIZE2

.END

; TEMPORARY FOR RETURN ADDRESS

WITH 00

;PUSH STARTING ADDRESS

;PUSH NUMBER OF BYTES

;PUSH VALUE
;FILL BUFFER

EA HEX (NOP)
;PUSH STARTING ADDRESS

;PUSH NUMBER OF BYTES

; PUSH VALUE
;FILL BUFFER

~e we wo wa wme

Block Move (BLKMOV)

5B

Moves a block of data from a source area
to a destination area. A

Procedure: The program determines if the
starting address of the destination area is
within the source area. If it is, then working
up from the starting address would overwrite
some of the source data. To avoid that prob-
lem, the program works down from the high-
est address (this is sometimes called move
right). If the starting address of the destina-
tion area is not within the source area, the
program simply moves the data starting from
the lowest address (this is sometimes called a
move left). In either case, the program moves
the data by handling compiete pages sepa-
rately from the remaining partial page. This
approach allows the program to use 8-bit
counters rather than a 16-bit counter, thus
reducing execution time (although increas-
ing memory usage). An area size (number of
bytes to move) of 0000, causes an exit with
no memory changed.

Important Note: The user should be careful
if either the source or the destination area
includes the temporary storage used by the
program itself. The program provides aiito-
matic address wraparound (mod 64K), but
the results of any move involving the pro-
gram’s own temporary storage are unpredic-
table.

Registers Used: All

Execution Time: 128 cycles overhead plus the
following:

1. If data can be moved starting from the
lowest address (i.e., left):

20 + 4110 « (more significant byte of num-
ber of bytes to move) + 18 » (less significant byte
of number of bytes to move).

2. If data must be moved starting from the
highest address (i.e., right) because of overlap:

42 + 4622 + (more significant byte of num-
ber of bytes to move) + 18 * (less significant byte
of number of bytes to move).

Program Size: 157 bytes

Data Memory Required: Two bytes anywhere in
RAM for the length of the move (starting at
address MVELEN), four bytes on page 0 for
source and destination pointers (starting at
addresses MVSRCE and MVDEST taken as
addresses 00D0,, and 00D1,, — source
pointer — and addresses 00D2), and 00D3,, —
destination pointer — in the listing).

Special Cases:

1. A size (number of bytes to move) of zero
causes an immediate exit with no memory
changed.

2. Moving data to or from areas occupied or
used by the program itself will produce unpredic-
table results. Obviously, moving data to or from
page 0 requires caution, since both this routine
and most systems programs use that page. This
routine does provide automatic address wrap-
around (mod 64K) for consistency, but the user
must still approach moves involving page 0
carefully.

197

1 98 ARRAY MANIPULATION

Entry Conditions

Order in stack {starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of number of bytes
to move '

More significant byte of number of
bytes to move

Less significant byte of lowest address
of destination area C

More significant byte of lowest address
of destination area

Less significant byte of lowest address
of source area

More significant byte of lowest address
of source area '

Exit Conditions

The block of memory is moved from the
source area to the destination area. If the
number of bytes to be moved is NBYTES, -
the lowest address in the destination area is
DEST, and the lowest address in the source
area is SOURCE, then the area from
addresses SOURCE through SOURCE +
NBYTES — 1 is moved to addresses DEST
through DEST + NBYTES — 1.

Examples
1. Data: Number of bytes to moye = 02004
Lowest address in destination area
= 05D14
Lowest address in source area
= 035E¢

The contents of memory locations
035E,, through 055D are moved
t0 05D 1,4 through 07D0yg.

Number of bytes to move
= 1B7A¢

Lowest address in destination
area = C946,4

Lowest address in source area
= C300,

The contents of memory locations
C300,, through DE79)¢ are moved
to C946,¢ through E4BF ¢

Result: -

2. Data:

Resuit:

Note that Example 2 presents a more com-
plex problem than Example 1 because the
source and destination areas overlap. If, for
instance, the program were simply to move
data to the destination area starting from the
lowest address, it would initially move the
contents of C300,, to C946,,. This would
destroy the old contents of C946 ,, which are
needed later in the move. The solution to this
problem is to move the data starting from the
highest address if the destination area is
above the source area but overlaps it.

~ we wo wa

O NS NG N NE N NS NG Ne NG WO NE N MO N NE ME NE me ME WS NS N NS NS Ne Ne WE W %e %E NE s we w6

5B BLOCK MOVE (BLKMOV)

Title Block Move

Name: BLKMOV

Purpose: Move data from source to destination
Entry: TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of number of bytes to move,

High byte of number of bytes to move,

Low byte of lowest address in destination
area, .

High byte of lowest address in destination
area,

Low byte of lowest address in source area,

High byte of lowest address in source areéa

Exit: Data moved from source to.destination

Registers used: All

Time: 102 cycles overhead plus move
move left cycles equals
20 +

(high byte of length * 4110) +
(low byte of length * 18)

move right cycles equals
42 +
- (high byte of length * 4622) +
(low byte of length * 18)

Size: Program 146 bytes
Data 2 bytes plus
4 bytes in page zero

; PAGE ZERO POINTERS

MVSRCE
MVDEST

BLKMOV:

. EQU 0DOH ;SOURCE ADDRESS
.EQU O0D2H ;DESTINATION ADDRESS

;GET RETURN ADDRESS

PLA
TAY ;SAVE LOW BYTE
PLA
TAX sSAVE HIGH BYTE

;GET NUMBER OF BYTES
PLA

199

e we we we

WO DT N NS M NS NE NE N NE NE e NI NG WE ME e N Ne Mg Ne W We N6 N N % e e W me W A we e

200 ARRAY MANIPULATION

STA MVELEN ;STORE LOW BYTE
PLA

STA MVELEN+1 ;STORE HIGH BYTE
;GET STARTING DESTINATION ADDRESS

PLA .

STA MVDEST sSTORE LOW BYTE
PLA

STA MVDEST+1 sSTORE HIGH BYTE
:GET STARTING SOURCE ADDRESS

PLA

STA MVSRCE ;STORE LOW BYTE
PLA

STA MVSRCE+1 ;STORE HIGH BYTE
;RESTORE RETURN ADDRESS

TXA .

PHA :RESTORE HIGH BYTE
TYA

PHA ;RESTORE LOW BYTE

DETERMINE IF DESTINATION AREA IS ABOVE SOURCE AREA BUT OVERLAPS
IT. REMEMBER, OVERLAP CAN BE MOD 64K. OVERLAP OCCURS IF
STARTING DESTINATION ADDRESS MINUS STARTING SOURCE ADDRESS (MOD 64K)
1S LESS THAN NUMBER OF BYTES TO MOVE

~ we we % we

LDA MVDEST ;CALCULATE DESTINATION - SOURCE

SEC

SBC MVSRCE

TAX

LDA MVDEST+1

SBC MVSRCE+1 ;MOD 64K IS AUTOMATIC - DISCARD CARRY
TAY

TXA ;COMPARE WITH NUMBER OF BYTES TO MOVE
CMP MVELEN

TYA

SBC MVELEN+1

BCS DOLEFT ;BRANCH IF NO PROBLEM WITH OVERLAP

;DESTINATION AREA IS ABOVE SOURCE AREA BUT OVERLAPS IT
;MOVE FROM HIGHEST ADDRESS TO AVOID DESTROYING DATA

JSR MVERHT

JMP EXIT

:NO PROBLEM DJOING ORDINARY MOVE STARTING AT LOWEST ADDRESS
DOLEFT:

JSR MVELFT
EXIT:

RTS

5B BLOCK MOVE BLkmov) 201

R Y Y s A s I

7SUBROUTINE: MVELFT

;PURPOSE: MOVE SOURCE TO DESTINATION STARTING FROM
THE LOWEST ADDRESS

ENTRY: MVSRCE 2 BYTE LOWEST ADDRESS OF SOURCE AREA
MVDEST 2 BYTE LOWEST ADDRESS OF DESTINATION AREA
MVELEN 2 BYTE NUMBER OF BYTES TO MOVE

;EXIT: - SOURCE MOVED TO DESTINATION
AR AR R R R Ry S I

~e wo e we

MVELFT: .

LDY #0 ;ZERO INDEX

LDX MVELEN+1 i X= NUMBER OF FULL PAGES TO MOVE

BEQ MLPART ;IF X = 0 THEN DO PARTIAL PAGE
MLPAGE:

LDA (MVSRCE) , Y

STA (MVDEST) , Y sMOVE ONE BYTE

INY ;NEXT BYTE

BNE MLPAGE ;CONTINUE UNTIL 256 BYTES ARE MOVED

INC MVSRCE+1 ;sADVANCE TO NEXT PAGE OF SOURCE

INC MVDEST+1 ;i AND DESTINATION

DEX ;DECREMENT PAGE COUNT

BNE MLPAGE ;CONTINUE UNTIL ALL FULL PAGES ARE MOVED
MLPART:

LDX MVELEN +GET LENGTH OF LAST PAGE

BEQ MLEXIT iBRANCH IF LENGTH OF LAST PAGE = 0

;REGISTER Y IS O

MLLAST:

LDA (MVSRCE) , Y

STA (MVDEST) ,Y ;MOVE BYTE

INY sNEXT BYTE

DEX ;DECREMENT COUNTER

BNE MLLAST ;CONTINUE UNTIL LAST PAGE IS DONE
MLEXIT:

RTS

;**'k*

;SUBROUTINE: MVERHT

;PURPOSE: MOVE SOURCE TO DESTINATION STARTING FROM

H THE HIGHEST ADDRESS

+ENTRY: MVSRCE 2 BYTE LOWEST ADDRESS OF SOURCE AREA

H MVDEST 2 BYTE LOWEST ADDRESS OF DESTINATION AREA
; * MVELEN 2 BYTE NUMBER OF BYTES TO MOVE

;EXIT: SOURCE MOVED TO DESTINATION
LR R L R R R R L L S e

H

MVERHT :
H
iMOVE THE PARTIAL PAGE FIRST
LDA MVELEN+1
CLC
ADC MVSRCE+1

STA MVSRCE+1 ;POINT TO LAST PAGE OF SOURCE

202 ARRAY MANIPULATION

;POINT TO LAST PAGE OF DESTINATION

;MOVE THE LAST PARTIAL PAGE FIRST

LDA MVELEN+1

CLC

ADC MVDEST+1

STA MVDEST+1

LDY MVELEN

BEQ MRPAGE
MRO:

DEY

LDA (MVSRCE) ,Y

STA (MVDEST) ,Y

CPY #0

BNE MRO
MRPAGE:

LDX MVELEN+1

BEQ MREXIT
MR1:

DEC MVSRCE+1

DEC *MVDEST+1
MR2:

DEY

LDA (MVSRCE) , Y

STA (MVDEST) ,Y

CPY #0

BNE MR2

DEX

BNE MR1
MREXIT:

RTS

i
;DATA SECTION

MVELEN .BLOCK 2

~o Ne we we we

SC0502:
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA

SAMPLE EXECUTION:

SRCE+1
SRCE
DEST+1

DEST

;GET LENGTH OF LAST PAGE

;IF Y = 0 THEN DO THE FULL PAGES

;BACK UP Y TO THE NEXT BYTE

;MOVE BYTE

;BRANCH IF NOT DONE WITH THE LAST PAGE
;GET HIGH BYTE OF COUNT AS PAGE COUNTER
;BRANCH IF HIGH BYTE = 0 (NO FULL PAGES)

;BACK UP TO PREVIOUS PAGE OF SOURCE
; AND DESTINATION

;BACK UP Y TO THE NEXT BYTE
;MOVE BYTE
;BRANCH IF NOT DONE WITH THIS PAGE

;DECREMENT PAGE COUNTER
;BRANCH IF NOT ALL PAGES ARE MOVED

;LENGTH OF MOVE

MOVE 0800 THROUGH 097F TO 0900 THROUGH OAT7F

;PUSH HIGH BYTE OF SOURCE
:PUSH LOW BYTE OF SOURCE
;PUSH HIGH BYTE OF DESTINATION

;PUSH LOW BYTE OF DESTINATION

.. e we we o we

LDA
PHA
LDA
PHA
JSR
BRK

JMP

5B BLOCK MOVE BLKkMOv) 203

LEN+1
;PUSH HIGH BYTE OF LENGTH
LEN
;PUSH LOW BYTE OF LENGTH
BLKMOV ;MOVE DATA FROM SOURCE TO DESTINATION
; FOR THE DEFAULT VALUES MEMORY FROM 800 HEX
i THROUGH 97F HEX IS MOVED TO 900 HEX THROUGH
; AJF HEX. i
SC0502

’
;TEST DATA, CHANGE TO TEST OTHER VALUES

SRCE .WORD
DEST .WORD
LEN .WORD

. END

0800H ;STARTING ADDRESS OF SOURCE AREA
0900H :{STARTING ADDRESS OF DESTINATION AREA
0180H ;NUMBER OF BYTES TO MOVE

; PROGRAM

One-Dimensional Byte Array Index (D1BYTE) 5C

Calculates the address of an element of a Registers Used: All
byte-length array, given the base address and Execution Time: 74 cycles
the subscript (index) of the element.

Procedure: The program simply adds the Data Memory Required: Four bytes anywhere in

base address to the subscript. The sum is the RAM to hold the return address (two bytes start-

address of the element. ing at address RETADR) and the subscript (two
bytes starting at address SUBSCR).

Program Size: 37 bytes

Entry Conditions Exit Conditions

Order in stack (starting at the top)
o (A) = More significant byte of address of
Less significant byte of return address element

More significant byte of return address L.
& y (Y) = Less significant byte of address of

Less significant byte of subscript element
More significant byte of subscript

Less significant byte of base address of

array
More significant byte of base address of
array
Examples
1. Data: Base address = 0E00, 2. Data: Base address = C4E1 ¢
Subscript = 012C ¢ Subscript = 02E4,¢
Result: Address of element = 0E00;¢ Result: Address of element = C4E1
+ 012C,; = OF2C,. + 02E4,5 = CTC5y4.

204

5C ONE-DIMENSIONAL BYTE ARRAY INDEX (018YTE) 205

; Title ’ One dimensional byte array indexing ;
: Name: D1BYTE H
; h
i i
Purpose: Given. the base address of a byte array and a

subscript 'I' calculate the address of A[I]

Entry: . TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of subscript,
High byte of subscript,
Low byte of base address of array,
High byte of base address of array

Exit: Register A = High byte of address
Register Y = Low byte of address

Registers used: All

Time: 74 cycles
size: Program 37 bytes
Data 4 bytes

WO NE We WE NE ME WE WO We We We WE N e NS Ne NS NG N NG e N we
|E NS N NE NE e NE Ne N N Ne N Ne NE Ne e we We we wE e we we

D1BYTE:
iSAVE RETURN ADDRESS
PLA
STA RETADR
PLA
STA RETADR+1
;GET SUBSCRIPT
PLA
STA ss
PLA
STA Ss+1
;ADD BASE ADDRESS TO SUBSCRIPT
PLA
CLC
aDC ss
TAY ;REGISTER Y = LOW BYTE
PLA
ADC ss+1
TAX ;SAVE HIGH BYTE IN REGISTER X

;RESTORE RETURN ADDRESS TO STACK
LDA RETADR+1 -
PHA

206 ARRAY MANIPULATION

LDA RETADR

PHA - ;RESTORE RETURN ADDRESS

TXA ;GET HIGH BYTE BACK TO REGISTER A

RTS ;EXIT
i
; DATA
RETADR: .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
SS: .BLOCK 2 ;SUBSCRIPT INTO THE ARRAY
; H
i H
; SAMPLE EXECUTION: ;
H H
H i
SC0503:

;PUSH ARRAY ADDRESS

LDA ARYADR+1 ;HIGH BYTE

PHA '

LDA ARYADR ;s LOW BYTE

PHA

; PUSH A SUBSCRIPT

LDA SUBSCR+1 ;HIGH BYTE

PHA

LDA SUBSCR ;LOW BYTE

PHA

JSR D1BYTE ;CALCULATE ADDRESS

BRK ;AY = ARY+2
; = ADDRESS OF ARY(2), WHICH CONTAINS 3

JMP SC0503
H
;TEST DATA, CHANGE SUBSCR FOR OTHER VALUES
SUBSCR: .WORD 2 ;TEST SUBSCRIPT INTO THE ARRAY

ARYADR: .WORD ARY ;BASE ADDRESS OF ARRAY

;THE ARRAY (8 ENTRIES)
ARY: .BYTE 1,2,3,4,5,6,7,8

.END ; PROGRAM

One-Diniensional Word Array Index (D1WORD)

5D

Calculates the starting address of an ele-
ment of a word-length (16-bit) array, given
the bas¢ address of the array and the
subscript (index) of the element. The ele-
ment occupiés the starting address and the
address one larger; elements may be
organized with either the less significant byte
or the more significant byte in the starting
address.

Procedure: The program multiplies the
subscript by two (using a logical left shift)
before adding it to the base address. The sum

Registers Used: All
Execution Time: 78 cycles
Program Size: 39 bytes

Data Memory Requiired: Four bytes anywhere in
RAM to hold the return address (two bytes start-
ing at address RETADR) and the subscript (two
bytes starting at address SUBSCR).)

(BASE + 2+SUBSCRIPT) is then the start-
ing address of the element.

Entry Conditions

Order in stack (starting at the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of subscript
More significant byte of subscript

Less significant byte of base address of
array

More significant byte of base address of
array ‘

Exit Conditions

(A) = More significant byte of starting
address of element

(Y) = Less significant byte of starting
address of element

Examples
1. Data: Base address = A148,
Subscript = 01A9,,

Reésult: Address of first byte of element
= Al4816 4+ 2 X 01A916
= Al48,(+ 0342, = A49A,.
That is, the word-length element

occupies addresses A49A 5 and A49B, .

2. Data: Baseaddress = C4EQ,,
Subscript = 015B,¢
Result: Address of first byte of element

=C4E0;; + 2 X 015B; .

=C4E016 + 028616 = C79616.
That is, the word-length element
occupies addresses C796,; and C797,.

207

Ng

208 ARRAY MANIPULATION

H Title One dimensional word array indexing
; Name: D1WORD
H
H
Purpose: Given the base address of a word array and a

subscript 'I' calculate the address of A[I]

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of subscript,
High byte of subscript,
Low byte of base address of array,
High byte of base address of array

Exit: Register A = High byte of address
Register Y = Low byte of address

Registers used: All

Time: 78 cycles
Size: Program 39 bytes
Data 4 bytes

s N6 We e e WE e WE e WE Ne Ve W e W We W W %o W N N o

D1WORD:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET SUBSCRIPT AND MULTIPLY IT BY 2
PLA '

ASL A

STA Ss

PLA

ROL A

STA SS+1

;ADD BASE ADDRESS TO DOUBLED SUBSCRIPT
PLA

CLC

ADC ss .

TAY ;REGISTER Y = LOW BYTE
PLA

ADC Ss+1
- TAX ;SAVE HIGH BYTE IN REGISTER X

;RESTORE RETURN ADDRESS TO STACK

—e we we we

ma w6 we w6 we We We We we NE ms W ws W Wa W4 we W6 Ny e N6 Se S

LDA RETADR+1
PHA ‘
LDA RETADR
PHA
TXA
RTS
i
; DATA
RETADR: .BLOCK 2
SS: .BLOCK 2
; SAMPLE EXECUTION:
SC0504:
;PUSH ARRAY ADDRESS
LDA ARYADR+1
PHA
LDA ARYADR
PHA
;PUSH A SUBSCRIPT OF 3
LDA SUBSCR+1
PHA
LDA SUBSCR
PHA
JSR D1WORD
BRK
JMP SC0504
;TEST DATA

SUBSCR: .WORD 3
ARYADR: .WORD ARY

;THE ARRAY (8 ENTRIES)
ARY: .WORD 0180H,01COH, 02
.END ; PROGRAM

5D ONE-DIMENSIONAL WORD ARRAY INDEX {D1WORD) 209

;RESTORE RETURN ADDRESS

;GET HIGH BYTE BACK TO REGISTER A
JEXIT,

;TEMPORARY FOR RETURN ADDRESS
;SUBSCRIPT INTO THE ARRAY

;CALCULATE ADDRESS

;FOR THE INITIAL TEST DATA

;AY STARTING ADDRESS OF ARY (3)
H ARY + (3*2)

ARY + 6

ARY (3) CONTAINS 240 HEX

~ ~e

;TEST SUBSCRIPT INTO ARY
;BASE ADDRESS OF ARRAY

00H,0240H,0280H,02COH,03E7H,0A34H

~e we wp w5 we

Two-Dimensional Byte Array Index (D2BYTE) 5E

Calculates the address of an element of a
two-dimensional byte-length array, given the
base address of the array, the two subscripts
of the element, and the size of a row (that is,
the number of columns). The array is
assumed to be stored in row major order (that
is, by rows) and both subscripts are assumed
to begin at zero.

Procedure: The program multiplies the row
size (number of columns in a row) times the
row subscript (since the elements are stored
by rows) and adds the product to the column
subscript. It then adds the sum to the base
address. The program performs the ‘multi-
plication using a standard shift-and-add
algorithm (see Subroutine 6H).

Registers Used: All

Execution Time: Approximately 1500 cycles,
depending mainly on the amount of time
required to perform the multiplication.

Program Size: 119 bytes

Data Memory Required: Ten bytes anywhere in
memory to hold the return address (two bytes
starting at address RETADR), the row subscript
(two bytes starting at address SS1), the size

- (length) of the rows (two bytes starting at address
S$S1SZ), the column subscript (two bytes starting
at address $S2), and the product of row size times
row subscript (two bytes starting at address
PROD).

Entry Conditions

Order in stack (starting at the top)

Less significant byte of return” address
More significant byte of return address

Less significant byte of column subscript
More significant byte of column subscript

Less significant byte of the size of a row
More significant byte of the size of a row

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of bass address of array
More significant byte of base address of array

210

Exit Conditions

(A) = More significant byte of address of
element

(Y) = Less significant byte of address of
element

Examples

1. Data:

Result:

2. Data:

Result:

~. we we we

WO WO NE N Ne ME N e e e N % we N e we

Base address = 3C00,,

Column subscript = 0004,

Size of row (number of columns)
= 001816

Row subscript = 0003,

Address of element = 3C00,4
+0003,, x 0018, + 0004,
= 3C00,¢ + 0048, + 0004,,
= 3C4Cy,.

Thus the address of ARRAY (3,4)
is 3C4C .

Base address = 6A4A

Column subscript = 00354

Size of row (number of columns)
= 0050,

Row subscript = 0002,

Address of element = 6A4A ¢
+ 0002, x 0050,
+ 0035, = 6A4A ¢
+ 00A0;, + 0035, = 6B1F.
Thus the address of ARRAY
(2,35) is 6BIF .

5E TWO-DIMENSIONAL BYTE ARRAY INDEX {D2BYTE)

v

211

The general formula is

ADDRESS OF ELEMENT = BASE ADDRESS
OF ARRAY + ROW SUBSCRIPT x SIZE OF ROW
+ COLUMN SUBSCRIPT

Note that we refer to the size of the row
subscript; the size is the number of consecu-
tive memory addresses for which the
subscript has the same value. This is also the
number of bytes from the starting address of
an element to the starting address of the ele-
ment with the same column subscript but a
row subscript one larger.

Two dimensional byte array indexing

Given the base address of a byte array, two
'I','J', and the size of the first
subscript in bytes, calculate the address of
A[I,J]. The array is assumed to be stored in
(afo,01, a(o,11,..., A[K,L}),
and both dimensions are assumed to begin at
zero as in the following Fascal declaration:
A:ARRAY [0,.2,0..7] OF BYTE;

Title
Name: D2BYTE
Purpose:
subscripts
row major order
Entry: TOP OF STACK

Low byte of return address,
High byte of return address,
Low byte of second subscript,
High byte of second subscript,

Low byte of size of first subscript in bytes,

212 ARRAY MANIPULATION

High,byte of size of first subscript in bytes,;
Low byte of first subscript, :

i

H H
; High byte of first subscript, ;
H Low byte of base address of array, ;
: High byte of base address of array ;
; NOTE: H
; The size of the first subscript is the length ;
; of a row ;
H i
; Exit: Register A = High byte of address ;
; . Register Y = Low byte of address :
i H
; Registers used: All i
h ;
; Time: Approximately 1500 cycles ;
i H
H Size: Program 119 bytes :
; : Data 10 bytes H

D2BYTE:
;SAVE RETURN ADDRESS
PLA
STA RETADR
PLA
STA RETADR+1
;GET SECOND SUBSCRIPT
PLA
STA 52
PLA
STA §S2+1
;GET SIZE OF FIRST SUBSCRIPT (LENGTH OF A ROW)
PLA .
STA §s1S2
PLA
STA SS15Z+1
:GET FIRST SUBSCRIPT
PLA
STA ssl
PLA
STA S81+1

;MULTIPLY FIRST SUBSCRIPT * ROW LENGTH USING THE SHIFT AND ADD
; ALGORITHM. THE RESULT WILL BE IN SSl ’
LDA $0 . ; PARTIAL PRODUCT = ZERO INITIALLY

STA PROD
STA PROD+1
LDX #17 ;NUMBER OF SHIFTS = 17

CLC

5E TWO-DIMENSIONAL BYTE ARRAY INDEX (028YTE) 213

MULLP:
ROR PROD+1 ;SHIFT PARTIAL PRODUCT
ROR PROD
ROR SS1+1 ;SHIFT MULTIPLIER
ROR ssl
BCC DECCNT
CLC ;ADD MULTIPLICAND TO PARTIAL PRODUCT
LDA sslsz ; IF NEXT BIT OF MULTIPLIER IS 1
ADC PROD
STA PROD
LDA S518z+1
ADC PROD+1
STA PROD+1
DECCNT:
DEX
BNE MULLP
;ADD IN THE SECOND SUBSCRIPT
LbA ssl
CLC
ADC §S2
STA ssl
LDA S51+1
ADC §52+1
STA SS1+1
;ADD BASE ADDRESS TO FORM THE FINAL ADDRESS
PLA
CLC
ADC ssl
TAY ;REGISTER Y = LOW BYTE
PLA 4
ADC SS1+1
TAX 7SAVE HIGH BYTE IN REGISTER X
;RESTORE RETURN ADDRESS TO STACK
LDA RETADR+1
PHA
LDA RETADR
PHA ;RESTORE RETURN ADDRESS
TXA ;GET HIGH BYTE BACK TO REGISTER A
RTS ;EXIT
H
; DATA
RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRES
Ssl: .BLOCK 2 ;SUBSCRIPT 1
§S1SZ: .BLOCK 2 iSIZE OF SUBSCRIPT 1 IN BYTES
sS2: .BLOCK 2 ;SUBSCRIPT 2
PROD: .BLOCK 2

; TEMPORARY FOR THE MULTIPLY

214 ARRAY MANIPULATION,

~e me we we we

SAMPLE EXECUTION:

SC0505:

; DATA
SUBS1:

SSUBS1:

SUBS2:
ARYADR

;PUSH ARRAY ADDRESS

LDA
PHA
LDA
PHA

ARYADR+1

ARYADR

; PUSH FIRST SUBSCRIPT

LDA
PHA
LDA
PHA

SUBS1+1

SUBS1

;PUSH SIZE OF FIRST SUBSCRIPT

LDA
PHA
LDA
PHA

SSUBS1+1

SsUBS1

; PUSH SECOND SUBSCRIPT

LDA
PHA
LDA
PHA

JSR
BRK

JMP

.WORD
.WORD
.WORD
:- ,WORD

;THE ARRAY (3

ARY:

- .BYTE
.BYTE

.BYTE

. END

SUBS2+1

SUBS2

D2BYTE ;CALCULATE ADDRESS
;FOR THE INITIAL TEST DATA
:AY = ADDRESS OF ARY(2,4)
;= ARY + (2%8) + 4
. = ARY + 20 (CONTENTS ARE 21)

SC0505

2 ; SUBSCRIPT 1

8 ;SIZE OF SUBSCRIPT 1

4 ;SUBSCRIPT 2

ARY ;ADDRESS OF ARRAY

ROWS. OF & COLUMNS)
1,2,3,4,5,6 ,7,8
9 ,10,11,12,13,14,15,16
17,18,19,20,21,22,23,24

; PROGRAM

~e =5 we wo o

Two-Dimensional Word Array Index (D2WORD)

5F

Calculates the starting address of an ele-
ment of a two-dimensional word-length (16-
bit) array, given the base address of the array,
the two subscripts of the element, and the
size of a row in bytes. The array is assumed to
be stored in row major order (that is, by
rows) and both subscripts are assumed to
begin at zero.

Procedure: The program multiplies the row
size (in bytes) times the row subscript (since
the elements are stored by row), adds the
product to the doubled column subscript
(doubled because each element occupies two
bytes), and adds the sum to the base address.
The program uses a standard shift-and-add
algorithm (see Subroutine 6H) to multiply.

Registers Used: All

Execution Time: Approximately 1500 cycles,
depending mainly on the amount of time
required to perforin the multiplication of row size
in bytes times row subscript.

Program Size: 121 bytes

Data Memory Required: Ten bytes anywhere in
memory to hold the return address (two bytes
starting at address RETADR), the row subscript
(two bytes starting at address SS1), the row size
in bytes (two bytes starting at address SS1SZ),
the column subscript (two bytes starting at
address SS2), and the product of row size times
row subscript (two bytes starting at address
PROD).

Entry Conditions

Order in stack (starting at the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of column
subscript

More significant byte of column
subscript

Less significant byte of size of rows (in
bytes) ‘

More significant byte of size of rows (in
bytes)

Less significant byte of row subscript
More significant byte of row subscript

Less significant byte of base address of
array

More significant byte of base address of
array

Exit Conditions
(A) = More significant byte of starting

address of element

(Y) = Less significant.byte of starting
address of element

The element occupies the address in AY
and the next higher address.

215

21 6 ARRAY MANIPULATION

Examples

1.

2.

- we wo we

~s ms s we W e

Data:

Result:

Data:

Result:

Title
Name:

Purpose:

Base address = 5E14y¢

Column subscript = 0008,

Size of a row (in bytes) = 001C,,
(i.e., each row has 0014, or G00E ¢
word-length elements)

Row subscript = 00054

Starting address of element
= 5E14,¢ + 0005, X
001C ¢, + 0008, x 2 = SE14,,
+ 008C,¢ + 0010,, = SEBO.
Thus, the starting address of
ARRAY (5,8) is SEBO;4 and
the element occupies addresses
SEBO,4 and SEB1 4.

Base address = B100,

Column subscript = 0002;¢

Size of a row (in bytes) = 0008,
(i.e., each row has 4 word-length
elements)

Row subscript = 0006,

Starting address of element
= B100,, + 0006,
X 0008, + 0002), % 2 = B100y,
+ 0030, + 0004,, = B134,,.
Thus, the starting address of
ARRAY (6,2) is B134,; and
the element occupies
addresses B134,¢ and B135,.

The general formula is

STARTING ADDRESS OF ELEMENT
= BASE ADDRESS OF ARRAY

+ ROW SUBSCRIPT x SIZE OF ROW
+ COLUMN SUBSCRIPT X 2

Note that one parameter of this routine is
the size of a row in bytes. The size in the case
of word-length elements is the number of
columns (per row) times two (the size of an
element). The reason why we chose this
parameter rather than the number of col-
umns or the maximum column index is that
this parameter can be calculated once (when
the array bounds are determined) and used
whenever the array is accessed. The alterna-
tive parameters (number of columns or max-
imum column index) would require extra
calculations as part of each indexing opera-.
tion.

D2WORD

AlI,Jd].

Two dimensional word array indexing

Given the base address of a word array, two

subscripts 'I','J', and the size of the first
subscript in bytes, calculate the address of
The array is assumed to be stored in
row major order (a[0,0], A[O,1],..., A[K,L]),

~. we e e

w w4 ws we we we

* BF TWO-DIMENSIONAL WORD ARRAY INDEX (D2worD) 217

and both dimensions are assumed to begin at
zero as in the following Pascal declaration:
A:ARRAY[0..2,0..7] OF WORD;

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of second subscript,
High byte of second subscript,
Low byte of size of first subscript in bytes,
High byte of size of first subscript in bytes,
Low byte of first subscript,
High byte of first subscript,
Low byte of base address of array,
High byte of base address of array

Exit: Register A = High byte of address
Register Y = Low byte of address

Registers used: ALL

Time: Approximately 1500 cycles
Size: Program 121 bytes
Data 10 bytes

O NS NG N NE e W NE W NS N N NE % e NE e W6 %6 W we We %o Ne e we we
T NS Ne NE NE Ne Ns NS N e e e Ne NE % N % we we we e e we e e w6 we

D2WORD:
;SAVE RETURN ADDRESS
PLA
STA RETADR
PLA
STA RETADR+1
;GET SECOND SUBSCRIPT AND MULTIPLY BY 2 FOR WORD-LENGTH ELEMENTS
PLA ‘
ASL A
STA 852
PLA
ROL A
STA SS52+1
;GET SIZE OF FIRST SUBSCRIPT
PLA
STA sS1Ssz
PLA
STA §S152+1
:GET FIRST SUBSCRIPT
PLA
STA ss1
PLA

STA SS1+1

218 ARRAY MANIPULATION

MULLP:

DECCNT:

;MULTIPLY FIRST SUBSCRIPT * ROW SIZE (IN BYTES) USING THE SHIFT AND ADD
;ALGORITHM. THE RESULT WILL BE IN s§sl-

LDA #0 ; PARTIAL PRODUCT = ZERO INITIALLY
STA PROD

STA PROD+1

LDX #17 ;NUMBER OF SHIFTS = 17

CLC

ROR PROD+1 :SHIFT PARTIAL PRODUCT

ROR PROD

ROR SS1+1 ;SHIFT MULTIPLIER

ROR ssl

BCC DECCNT

CLC . ;ADD MULTIPLICAND TO PARTIAL PRODUCT
LDA Ss1szZ ; IF NEXT BIT OF MULTIPLIER IS 1
ADC PROD

STA PROD

LDA §S182+1

ADC PROD+1

STA PROD+1

DEX

BNE MULLP

;ADD IN THE SECOND SUBSCRIPT DOUBLED

LDA ssl-

CLC

ADC 8S2

STA ssl

LDA SS1+1

ADC §S2+1

STA §S1+1

;ADD BASE ADDRESS TO FORM THE FINAL ADDRESS

PLA

CLC

ADC ssl

TAY ;REGISTER Y = LOW BYTE

PLA '

ADC SS1+1 :
TAX ;SAVE HIGH BYTE IN REGISTER X
;RESTORE RETURN ADDRESS TO STACK

LDA RETADR+1

PHA

LDA RETADR

PHA :RESTORE RETURN ADDRESS

TXA ;GET HIGH BYTE BACK TO REGISTER A
RTS FEXIT

5F TWO-DIMENSIONAL WORD ARRAY INDEX (D2worD) 219

RETADR: .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
Ss1: .BLOCK 2 ;SUBSCRIPT 1

Sslsz: .BLOCK 2 ;SIZE OF SUBSCRIPT 1 IN BYTES
§52: .BLOCK 2 ;SUBSCRIPT 2

PROD: .BLOCK 2 ;i TEMPORARY FOR THE MULTIPLY

SAMPLE EXECUTION:

e na e we we
e Ne we ne we

SC0506:
;PUSH ARRAY ADDRESS
LDA ARYADR+1
PHA
LDA ARYADR
PHA
;PUSH FIRST SUBSCRIPT
LDA SUBS1+1
PHA
LDA SUBS1
PHA
;PUSH SIZE OF FIRST SUBSCRIPT
LDA SSUBS1+1
PHA
LDA SSUBS1
PHA
;PUSH SECOND SUBSCRIPT
LDA SUBS2+1
PHA
LDA SUBS2
PHA
JSR D2WORD ;CALCULATE ADDRESS
BRK ;FOR THE INITIAL TEST DATA
;AY = STARTING ADDRESS OF ARY (2,4)
; = ARY + (2*16) + (4*2)
H = ARY + 40 .
H = ARY(2,4) CONTAINS 2100 HEX
JMP SC0506
;DATA
SUBS1: - WORD 2 ;SUBSCRIPT 1
SSUBS1l: .WORD 16 ;SIZE OF SUBSCRIPT 1
SUBS2: .WORD 4 ;SUBSCRIPT 2
ARYADR: .WORD ARY ;ADDRESS OF ARRAY

iTHE ARRAY (3 ROWS OF 8 COLUMNS)

220

ARY:

ARRAY MANIPULATION

.WORD

.WORD-

.WORD

.END

0100H,0200H,0300H,0400H,0500H,0600H, 0700H, 0800H
0900H,1000H,1100H,12004,1300H,1400H,15008, 1600H
17004, 180UH, 19008, 2000H, 2100H, 2200H, 2300H, 2400H

; PROGRAM

N-Dimensional Array Index

(NDIM) 5G

Calculates the starting address of an ele-
ment of an N-dimensional array given the
base address and N pairs of sizes and
subscripts. The size of a dimension is the
number of bytes from the starting address of
an element to the starting address of the ele-
ment with an index one larger in the dimen-
sion but the same in all other dimensions.
The array is assumed to be stored in row
major order (that is, organized so that
subscripts to the right change before
subscripts to the left).

Note that the size of the rightmost
subscript is simply the size of the elements
(in bytes); the size of the next subscript is the
size of the elements times the maximum
value of the rightmost subscript plus 1, etc.
All subscripts are assumed to begin at Zero,
otherwise, the user must normalize the
subscripts (see the second example at the end
of the listing).

Procedure: The program loops on each
dimension, calculating the offset in that
dimension as the subscript times the size. If
the size is an easy case (an integral power of
2), the program reduces the multiplication to

Registers Used: All

Execution Time: Approximately 1100 cycles per
dimension plus 90 cycles overhead. Depends
mainly on the time required to perform the
multiplications.

Program Size: 192 bytes

Data Memory Required: Eleven bytes anywhere
in memory to hold the return address (two bytes
starting at address RETADR), the current
subscript (two bytes starting at address SS), the
current size (two bytes starting at address SIZE),
the accumulated offset (two bytes starting at
address OFFSET), the number of dimensions
(one byte at address NUMDIM), and the product
of size times subscript (two bytes starting at
address PROD).

Special Case: If the number of dimensions is
zero, the program returns with the base address
in registers A (more significant byte) and Y (less
significant byte).

left shifts. Otherwise, it performs each
multiplication using the shift-and-add
algorithm of Subroutine 6H. Once the pro-
gram has calculated the overall offset, it adds
that offset to the base address to obtain the
starting address of the element.

221

222 ARRAY MANIPULATION

Entry Conditions

Order in stack (starting at the top)

Less significant byte of return address
More significant byte of return address

Number of dimensions

Less significant byte of size of rightmost

dimension .
More significant byte of size of right-
most dimension

Less significant byte of rightmost
subscript

More significant byte of rightmost
subscript

Less significant byte of size of leftmost
dimension

More significant byte of size of leftmost
dimension

Less significant byte of leftmost
subscript

More significant byte of leftmost
subscript ’

Less significant byte of base address of
array

More significant byte of base address of
array

Exit Conditions

(A) = More significant byte of address of
element _
(Y) = Less significant byte of address of ele-
ment

The element occupies memory addresses
from the calculated starting address through
that address plus the rightmost subscript
minus 1. That is, the element occupies
memory addresses START through START
+ SIZE — 1, where START is the calculated
address and SIZE is the size of an elefnent in
bytes.

Example

Data: Base address = 3C00,,
Number of dimensions = 03,
Rightmost subscript = 0005,
Rightmost size = 0003, (3-byte entries)
Middle subscript = 0003,
Middle size = 0012¢ (six 3-byte entries)
Leftmost subscript = 0004,
Leftmost size = 007E,4 (seven sets of six
3-byte entries) '
Result: Address of entry = 3C00,, + 0005,, x
0003, + 0003, x 0012,; + 0004,
% 007E,, = 3C00;, + 000F,¢ + 0036,
+ 01F8,, = 3E3D¢ .
That is, the element is ARRAY (4,3.,5): it
occupies addresses 3E3D,, through
3E3F|,. The maximum values of the
various subscripts are 6 (leftmost) and $
(middle). Each element consists of three
bytes.
The general formula is

STARTING ADDRESS = BASE ADDRESS

6G N-DIMENSIONAL ARRAY INDEX (NDIM) 223

where:

N is the number of dimensions
SUBSCRIPT; is the ith subscript
SIZE, is the size of the ith dimension

Note that we use the sizes of each dimen-
sion as parameters to reduce the number of
repetitive multiplications and to generalize
the procedure. The sizes can be calculated
(and saved) as soon as the bounds of the
array are known. Those sizes can then be
used whenever indexing is performed on that
array. Obviously, the sizes do not change if
the bounds are fixed and they should not be
recalculated as part of each indexing opera-
tion. The sizes are also general, since the ele-
ments can themselves consist of any number
of bytes.

D P —

N—-1
+ E SUBSCRIPT; x SIZE,
i=0
; Title N dimensional array indexing
H Name: : NDIM
; .
; Purpose: Calculate the address of an element in a
; N dimensional array given the base address,
; N pairs of size in bytes and subscript, and the
; number of dimensions of the array. The array is
H assumed to be stored in row major order
; (af0,0,0],a(0,0,1),...,a(0,1,0],A(0,1,1],..
; Also it is assumed that all dimensions begin
; at 0 as in the following Pascal -declaration:
; A:ARRAY[O..l0,0..3,0..5] OF SOMETHING
; Entry: TOP OF STACK
;
;
H

Low byte of return address,

High byte of return address,

Number of dimensions,

Low byte of size (dim N-1) in bytes,
High byte of size (dim N-1) in bytes,
Low byte of subscript (dim N-1),

High byte of subscript (dim N-1}),

WO NE e N NE N N Ne N N e Ne mecne ma w6 we Ne s

224 /RRAY MANIPULATION

Ne s %o NE me wa we WS we N e e WE WS W W SE Ne We e e %o

NDIM:

LOOP:

Low byte of size (dim 0) in bytes,
High byte of size (dim 0) in bytes,
Low byte of subscript (dim 0),
High byte of subscript {dim 0),
Low byte of base address of array,
High byte of base address of array

High byte of address
Low byte of address

Exit: Register A =
Register- Y =

Registers used: All

Time: Approximately 1100 cycles per dimension
plus 90 cycles overhead.

Size: Program 192 bytes
Data 11 bytes

;POP PARAMETERS

PLA

STA RETADR

PLA

STA RETADR+1 ;SAVE RETURN ADDRESS

PLA

STA NUMDIM ;GET NUMBER OF DIMENSIONS
;OFFSET := 0

LDA #0

STA OFFSET

STA OFFSET+1

;CHECK FOR ZERO DIMENSIONS JUST IN CASE

LDA NUMDIM

BEQ ADBASE ;ASSUME THERE IS A BASE ADDRESS EVEN

; IF THERE ARE NO DIMENSIONS

; LOOP ON EACH DIMENSION
; DOING OFFSET := OFFSET + (SUBSCRIPT * SIZE)

PLA ; POP SI1ZE

STA SIZE

PLA

STA SIZE+1

PLA ;POP SUBSCRIPT
STA SS

PLA

Ne e wa e we W& wa We we e We We We N8 Wa S e Se ve S N S0

5G N-DIMENSIONAL ARRAY INDEX {NDIM) 225

STA 8S+1

JSR NXTOFF ‘tOFFSET := OFFSET + (SUBSCRIPT * S1ZE)
DEC NUMDIM ;DECREMENT NUMBER OF DIMENSIONS

BNE LOOP ;CONTINUE THROUGH ALL DIMENSIONS

ADBASE: ' -
;CALCULATE THE STARTING ADDRESS OF THE ELEMENT
;OFFSET = BASE + OFFSET

PLA :GET LOW BYTE OF BASE

CLC

ADC OFFSET ADD LOW BYTE OF OFFSET

STA OFFSET

PLA iGET HIGH BYTE OF BASE

ADC OFFSET+1 ;A = HIGH BYTE OF BASE + OFFSET
STA OFFSET+1

;RESTORE RETURN ADDRESS AND EXIT

LDA RETADR+1

PHA

LDA RETADR

PHA

LDa OFFSET+1 ;RETURN THE ADDRESS WHICH IS IN OFFSET
LDY OFFSET

RTS

.
’

1,

;SUBROUTINE NXTOFF

;PURPOSE: OFFSET := OFFSET + (SUBSCRIPT * SIZE);
;ENTRY: OFFSET = CURRENT OFFSET

SUBSCRIPT = CURRENT SUBSCRIPT

; SIZE = CURRENT SIZE OF THIS DIMENSION
EXIT: OFFSET = OFFSET + (SUBSCRIPT * SIZE);
REGISTERS USED: ALL

~

~o we wa

NXTOFF:
3 .
;CHECK IF SIZE IS POWER OF 2 OR 8 (EASY MULTIPLICATIONS - SHIFT ONLY)
LDA SIZE+1 sHIGH BYTE = 0 ?
BNE BIGSZ BRANCH IF SIZE IS LARGE
LDA SIZE
LDY #0 i Y=INDEX INTO EASY ARRAY
LDX #SZEASY iX=SIZE OF EASY ARRAY
EASYLP:
CMP EASYAY,Y
BEQ ISEASY ;BRANCH IF SIZE IS AN EASY ELEMENT
INY ; INCREMENT INDEX
DEX i DECREMENT COUNT
BNE EASYLP sBRANCH IF NOT THROUGH ALL EASY ELEMENTS

BEQ BIGSZ iBRANCH IF SIZE IS NOT EASY

226 ARRAY MANIPULATION

ISEASY:

SHL:

BIGSZ:

MULLP:

DECCNT:

ADDOFF:

EASYAY:

CPY
BEQ

#0
ADDOFF

;BRANCH IF SHIFT FACTOR = 0

;ELEMENT SIZE * SUBSCRIPT CAN BE PERFORMED WITH A SHIFT LEFT

ASL
ROL
DEY
BNE
BEQ

;SIZE IS NOT AN EAS

Ss
Ss+l

SHL
ADDOFF

;SHIFT LEFT LOW BYTE
;SHIFT LEFT HIGH BYTE

;CONTINUE UNTIL DONE
;DONE SO ADD OFFSET + SUBSCRIPT

Y MULTIPLICATION SO PERFORM MULTIPLICATION OF

; ELEMENT SIZE AND SUBSCRIPT THE HARD WAY

LDA
STA
STA
LDX
CLC

ROR
ROR
ROR
ROR
BCC
CLC
LDA
ADC
STA
LDA
ADC
STA

DEX
BNE

LDA
CLC
ADC

LDA
ADC
STA

RTS
.BYTE

.BYTE
.BYTE

#0
PROD
PROD+1
#17

PROD+1
PROD
Ss+1
SS
DECCNT

SI1ZE
PROD
PROD
SIZE+1
PROD+1
PROD+1

MULLP

SS

OFFSET
OFFSET
SS+1
OFFSET+1
OFFSET+1

e

; PARTIAL PRODUCT = ZERO INITIALLY
;:NUMBER OF SHIFTS = 17

;SHIFT PARTIAL PRODUCT

;SHIFT MULTIPLIER

sADD MULTIPLICAND TO PARTIAL PRODUCT
; IF NEXT BIT OF MULTIPLIER I1s 1

;ADD LOW BYTES

:ADD HIGH BYTES

HIFT FACTOR

5G N-DIMENSIONAL ARRAY INDEX (NDIM) 2.2 7

.BYTE 8 ;3

.BYTE 16. ;4

.BYTE 32, 35

.BYTE 64. ;6

.BYTE 128. 37
SZEASY .EQU $-EASYAY
;
;DATA
RETADR: .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
SS: .BLOCK 2 7SUBSCRIPT INTO THE ARRAY
SIZE: .BLOCK 2 ;SIZE OF AN ARRAY ELEMENT
OFFSET: .BLOCK 2 ;TEMPORARY FOR CALCULATING
NUMDIM: .BLOCK 1 ;NUMBER OF DIMENSIONS
PROD: .BLOCK 2 ;TEMPORARY FOR MULTIPLICATION IN NXTOFF

SAMPLE EXECUTION:

we we we we we
e %o wp we we

;s PROGRAM SECTION
SC0507:

’ .
:FIND ADDRESS OF AY1l][1,3,0]

; SINCE LOWER BOUNDS OF ARRAY 1 ARE ALL ZERO IT IS NOT
7 NECESSARY TO NORMALIZE THEM

iPUSH BASE ADDRESS OF ARRAY 1

LDA AY1ADR+1
PHA

LDA AY1ADR

PHA

; PUSH SUBSCRIPT AND SIZE FOR DIMENSION 1
LDA #0

PHA

LDA #1

PHA

LDA #0

PHA

LDA #a1sz1

PHA

; PUSH SUBSCRIPT AND SIZE FOR DIMENSION 2
LDA #0

PHA

LDA #3

PHA

LDA #0

PHA

LDA #Alsz2

PHA

228 ARRAY MANIPULATION

;PUSH SUBSCRIPT AND SIZE FOR DIMENSION 3

LDA #0

PHA

LDA $#0

PHA

LDA #0

PHA

LDA $A1S23

PHA

; PUSH NUMBER OF DIMENSIONS

LDA $#A1DIM

PHA

JSR NDIM ;CALCULATE ADDRESS
STARTING ADDRESS OF ARY1(1l,3,0)

BRK ;AY
; ARY + (1*126) + (3*21) + (0*3)
ARY + 189

- -

,

s CALCULATE ADDRESS OF AY2([-1,6]

: SINCE LOWER BOUNDS OF AY 2 DO NOT START AT ZERO THE SUBSCRIPTS
s+ MUST BE NORMALIZED

; PUSH BASE ADDRESS OF ARRAY 2

LDA AY2ADR+1 /
PHA

LDA AY2ADR

PHA

;PUSH (SUBSCRIPT - LOWER BOUND) AND SIZE FOR DIMENSION 1
LDA $-1

SEC

SBC $A2D1L '

TAX ;SAVE LOW BYTE

LDA 4$0FFH ;HIGH BYTE OF -1 SUBSCRIPT
SBC 4$0FFH ;HIGH BYTE OF A2D1L

PHA ;PUSH HIGH BYTE

TXA

PHA : ; PUSH LOW BYTE

LDA #0

PHA

LDA $A2S21

PHA

;PUSH (SUBSCRIPT - LOWER BOUND) AND SIZE FOR DIMENSION 2
LDA #6

SEC

SBC $A2D2L

TAX ;SAVE LOW BYTE
LDA #0

SBC #0

PHA ;PUSH HIGH BYTE
TXA

PHA ;PUSH LOW BYTE
LDA #0

5G N-DIMENSIONAL ARRAY INDEX (NDIM) 229

PHA :
LDA #2522
PHA
; PUSH NUMBER OF DIMENSIONS
LDA #A2DIM
PHA
JSR NDIM ;CALCULATE ADDRESS
BRK ;AY = STARTING .ADDRESS OF ARY1 (-1,6)
i = ARY + (((-1) - (=5))*18) + ((6 - 2)*2)
;i = ARY + 80
JMP 5C0507
;DATA
AY1ADR: .WORD AY1 ;ADDRESS OF ARRAY 1
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2

;AY1 : ARRAY[AlDlL..AlDlH,AlDZL..AlDZH,A1D3L..AlD3H] OF THREE BYTE ELEMENTS

H (0 .. 3 , 0 .. 5, 0 .. &6]

AlDIM: .EQU 3 ;NUMBER OF DIMENSIONS OF ARRAY 1
AlD1L: .EQU 0 ;LOW BOUND OF ARRAY 1 DIMENSION 1
AlDIlH: .EQU 3 jHIGH BOUND OF ARRAY 1 DIMENSION 1
AlD2L: .EQU 0 ;LOW BOUND OF ARRAY 1 DIMENSION 2
AlD2H: .EQU 5 sHIGH BOUND OF ARRAY 1 DIMENSION 2
AlD3L: L.EQU 0 ;LOW BOUND OF ARRAY 1 DIMENSION 3
AID3H: .EQU 6 ;HIGH BOUND OF ARRAY 1 DIMENSION 3
AlS23: L.EQU 3 ;SIZE OF AN ELEMENT IN DIMENSION 3

Alsz2: .EQU ((A1D3H-A1D3L)+1) *A1S23 ;SIZE OF AN ELEMENT IN DIMENSION 2
Alszl: L.EQU ((A1D2H-A1D2L)+1) *A1SZ2 ;SIZE OF AN ELEMENT IN DIMENSION 1
AY1: .BLOCK ((A1D1H-A1D1L)+1)*A1SZ1 ;THE ARRAY

;AY2 ARRAY [AIDIL. .A1D1H,Al1D2L..A1D2H] OF WORD

; [-5.. -1 , 2 .. 10]

A2DIM: LEQU 2 iNUMBER OF DIMENSIONS OF ARRAY 2
A2D1L: L.EQU -5 ;LOW BOUND OF ARRAY 2 DIMENSION 1
A2D1H: ,EQU -1 ;HIGH BOUND OF ARRAY 2 DIMENSION 1
A2D2L: .EQU 2 ;LOW BOUND OF ARRAY 2 DIMENSION 2
A2D2H: .EQU 10 HIGH BOUND OF ARRAY 2 DIMENSION 2
A2sz2: .EQU 2 ;SIZE OF AN ELEMENT IN DIMENSION 2
A2521: .EQU ((A2D2H-A2D2L)+1) *A2522 ;SIZE OF AN ELEMENT IN DIMENSION 1
AY2: +BLOCK ((A2D1H-A2D1L)+1)*A2SZ1 ;THE ARRAY

«END ; PROGRAM

16-Bit Addition (ADD16)

6A

Adds two 16-bit operands obtained from
the stack and places the sum at the top of the
stack. All 16-bit numbers are stored in the
usual 6502 style with the less significant byte
on top of the more signiﬁcant byte.

Procedure: The program clears the Carry
flag initially and adds the operands one byte
at a time, starting with the less significant
bytes. It sets the Carry flag from the addition
of the more significant bytes.

Registers Used: A, P, Y
Execution Time: 80 cycles
Program Size: 38 bytes

Data Memory Required: Four bytes anywhere in
memory for the second operand (two bytes start-
ing at address ADEND2) and the return address
(two bytes starting at address RETADR).

Entry Conditions

. Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of first operand
More significant byte of first operand

Less significant byte of second operand
More significant byte of second operand

Exit Conditions

Order in stack (starting from the top)

Less significant byte of sum
More significant byte of sum

Examples

1. Data:. First operand = 03El ¢
Second operand = 07TE4 ¢

Result: Sum = 0BC5¢
Carry = 0

230

2. Data: Firstoperand = A45D ¢
Second operand = 97El ¢

Result: Sum = 3C3E
Carry = 1

6A 16-BIT ADDITION (ADD16) 231

; Title 16 bit addition ;
i Name: ADDlé6 :
Purpose: Add 2 16 bit signed or unsigned words and return;

a 16 bit signed or unsigned sum. ;

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of operand 2,
High byte of operand 2,
Low byte of operand 1,
High byte of operand 1

Exit: Sum = operand 1 + operand 2
TOP OF STACK
Low byte of sum,
High byte of sum

Registers used: A,P,Y

Time: 80 cycles
Size: Program 38 bytes
Data 4 bytes

TE N NE WS NP NE NS NP N WE NE Ne We ME N We NE We %e % Ne W wa s we

WO Ne Me Ne Ne W e ma we we %a e wE NE %5 e Se e wa me we we

ADD16:
;SAVE THE RETURN ADDRESS
PLA
STA RETADR
PLA
STA RETADR+1
;GET ADDEND 2
PLA
STA ADEND2
PLA -
STA ADEND2+1
;SUM ADDEND 2 WITH ADDEND 1
PLA
CLC
ADC ADEND2
TAY ;SAVE LOW BYTE OF SUM
PLA
ADC ADEND2+1

;PUSH THE SUM
PHA ;PUSH HIGH BYTE
TYA

232 ARITHMETIC

PHA ;PUSH LOW BYTE

;PUSH RETURN ADDRESS AND EXIT
LDA RETADR+1

PHA

LDA RETADR

PHA

RTS

;DATA
ADEND2: .BLOCK
RETADR: .BLOCK

; TEMPORARY FOR ADDEND 2
; TEMPORARY FOR RETURN ADDRESS

[S %)

SAMPLE EXECUTION

~. %o we we we
g

SC0601:
;SUM OPRND1 + OPRND2
LDA OPRND1+1
PHA
LDA OPRND1
PHA
LDA OPRND2+1
PHA
LDA OPRND2
PHA
JSR ADD16
PLA
TAY
PLA
BRK ;A = HIGH BYTE, Y = LOW BYTE
JMP SC0601

;TEST DATA, CHANGE FOR DIFFERENT VALUES
OPRND1 .WORD 1023 :1023 + 123 = 1146 = 047AH
OPRND2 .WORD 123

.END ; PROGRAM

- %o e wo we

16-Bit Subtraction (SUB16)

68

Subtracts two 16-bit operands obtained
from the stack and places the difference at
the top of the stack. All 16-bit numbers are
stored in the usual 6502 style with the less
significant byte on top of the more significant
byte. The subtrahend (number to be
subtracted) is stored on top of the minuend
(number from which the subtrahend is
subtracted). The Carry flag acts as an
inverted borrow, its usual role in the 6502.

Procedure: The program sets the Carry flag
(the inverted borrow) initially and subtracts
the subtrahend from the minuend one byte at

Registers Used: A, P, Y
Execution Time: 80 cycles
Program Size: 38 bytes

Data Memory Required: Four bytes anywhere in
memory for the subtrahend (two bytes starting at
address SUBTRA) and the return address (two
bytes starting at address RETADR).

a time, starting with the less significant bytes.
It sets the Carry flag from the subtraction of
the more significant bytes.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of subtrahend
More significant byte of subtrahend

Less significant byte of minuend
More significant byte of minuend

Exit Conditions

Order in stack (starting from the top)

Less significant byte of difference (minuend

Examples

1. Data: Minuend = A45D,,

Subtrahend = 97E1 ¢

Difference = Minuend — Subtrahend
= 0C7C16

Carry = 1 (no borrow)

Result:

— subtrahend)

More significant byte of difference (minuend
— subtrahend)

2. Data: Minuend = 03El

Subtrahend = 07E4,(

Difference = Minuend — Subtrahend
= FBFD,,
Carry = 0 (borrow generated)

Result:

233

234 ARITHMETIC

s we wo we

~e e NP WE WO W W WE WS WS We WE We W We Wp WO We WO Ve N6 NE W We N0

SUB16:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

16 bit subtractioﬁ
SUB16

Subtract 2 16 bit signed or unsigned words and
return a 16 bit signed or unsigned difference.

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of subtrahend,
High byte of subtrahend,
Low byte of minuend,
High byte of minuend

Difference = minuend - subtrahend
TOP OF STACK
Low byte of difference,
High byte of difference
A,P,Y
80 cycles

Program 38 bytes
Data 4 bytes

;SAVE THE RETURN ADDRESS

PLA
STA
PLA
STA

RETADR

RETADR+1

;GET SUBTRAHEND

PLA
STA
PLA
STA

SUBTRA
SUBTRA+1

; SUBTRACT SUBTRAHEND FROM MINUEND

PLA
SEC
SBC
TAY
PLA
SBC

SUBTRA

SUBTRA+1

;SAVE LOW BYTE OF THE DIFFERENCE

; PUSH THE DIFFERENCE

PHA
TYA
PHA

;PUSH HIGH BYTE

;PUSH LOW BYTE

~e we wo W

~e %6 e We Ns Ne me W Ne W6 wa W NS We NE We Mg W6 Ne e N We e Se S

6B 16-BIT SUBTRACTION (suB16) 235

; PUSH RETURN ADDRESS AND EXIT

LDA RETADR+1

PHA

LDA " RETADR

PHA

RTS
;DATA
SUBTRA: .BLOCK 2 :TEMPORARY FOR SUBTRAHEND
RETADR: .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
H i
H H
; SAMPLE EXECUTION ;
; i
; H
SC0602:

;SUBTRACT OPRND2 FROM OPRND1

LDA OPRND1+1

PHA

LDA OPRND1

PHA

LDA OPRND2+1

PHA

LDA OPRND2

PHA

JSR SUB16

PLA

TAY

PLA

BRK ;A = HIGH BYTE, Y = LOW BYTE

JMP SC0602

;TEST DATA - CHANGE TO TEST OTHER VALUES
OPRND1 ,WORD 123 7123 - 1023 = -900 = OFC7CH
OPRND2 .WORD 1023

.END ; PROGRAM

16-Bit Multiplication (MUL16)

6C

Multiplies two 16-bit operands obtained
from the stack and places the less significant
word of the product at the top of the stack.
All 16-bit numbers are stored in the usual
6502 style with the less significant byte on top
of the more significant byte.

Procedure: The program uses an ordinary
add-and-shift algorithm, adding the multipli-
cand to the partial product each time it finds a
1 bit in the multiplier. The partial product
and the multiplier are shifted 17 times (the
number of bits in the multiplier plus 1) with
the extra loop being necessary to move the
final Carry into the product. The program
maintains a full 32-bit unsigned partial pro-
duct in memory locations (starting with the
most significant byte) HIPROD+1,

Registers Used: All

Execution Time: Approximately 650 to 1100
cycles, depending largely on the number of | bits
in the multiplier.

Program Size: 238 bytes

Data Memory Required: Eight bytes anywhere in
memory for the multiplicand (two bytes starting
at address MCAND), the multiplier and less sig-
nificant word of the partial product (two bytes
starting at address MLIER), the more significant
word of the partial product (two bytes starting at
address HIPROD), and the return address (two
bytes starting at address RETADR).

HIPROD, MLIER + 1, and MLIER. The less
significant word of the product replaces the
multiplier as the multiplier is shifted and
examined for 1 bits.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of multiplier
More significant byte of multiplier

Less significant byte of multiplicand
More significant byte of multiplicand

Exit Conditions

Order in stack (starting from the top}

Less significant byte of less significant word
of product

More significant byte of less significant word
of product

Examples

1. Data: Multiplier = 00124 (18,0)

Multiplicand = 03D1,¢ (977,¢)

Result: Product = 44B24 (17,586,()

236

Mulliplier = 37D1|6(14,289|0)

2. Daa:
Multiplicand = A045,, (41,029,0)
Result: Product = AB55, (43,861 (). Thisis

actually the less significant 16-bit
word of the 32-bit product
22F1ABSS, (586,264,381,4).

Note that MUL16 returns only the less
significant word of the product to maintain
compatibility with other 16-bit arithmetic
operations. The more significant word of the
product is available in memory locations
HIPROD (less significant byte) and
HIPROD +1 (more significant byte), but the

237

6C 16-BIT MULTIPLICATION (MUL 16}

user should note that it is correct only if the
operands are unsigned. If the operands are
signed numbers and either one is negative,
the user must determine the sign of the pro-
duct and replace negative operands with their
absolute values (two’s complements) before
calling MUL16.

; Title

H Name: MUL1é6

i
Purpose:
Entry: TOP OF STACK
Exit:

TOP OF STACK
Registers used: All
Time:

Size:
Data

TS NE WO N ME NE N N NS NG N Ne Ne We e M NE W6 NE We e We we we W

?
MUL16:
;SAVE, RETURN ADDRESS
PLA
STA RETADR
PLA
STA RETADR+1
;GET MULTIPLIER
PLA
STA MLIER

PLA

16 bit Multiplication

Multiply 2 signed or unsigned 16 bit words and
return a 16 bit signed or unsigned product.

Low byte of return address,
High byte of return address,
Low byte of multiplier,

High byte of multiplier,

Low byte of multiplicand,
High byte of multiplicand

Product = multiplicand * multiplier

Low byte of product,
High byte of product,

Approximately 650 to 1100 cycles

Program 238 bytes
8 bytes

ws e we we

T TS Ne NE e N Ne N e Ne Ne N mE M6 e NE me w4 e Mo we me we we We

238 ARITHMETIC

MULLP:

DECCNT:

;s DATA
MCAND:

STA MLIER+1
:GET MULTIPLICAND
PLA

STA MCAND
PLA

STA MCAND+1

; PERFORM MULTIPLICATION USING THE SHIFT AND ADD ALGORITHM
; THIS ALGORITHM PRODUCES A UNSIGNED 32 BIT PRODUCT IN
; HIPROD AND MLIER WITH HIPROD BEING THE HIGH WORD.

LDA #0

STA HIPROD ’ ;ZERO HIGH WORD OF PRODUCT

STA HIPROD+1

LDX $#17 ;NUMBER OF BITS IN MULTIPLIER PLUS 1, THE
; EXTRA LOOP IS TO MOVE THE LAST CARRY INTO
; THE PRODUCT

CLC ; CLEAR CARRY FOR FIRST TIME THROUGH LOOP

;IF NEXT BIT = 1 THEN
; HIPROD := HIPROD + MULTIPLICAND

ROR HIPROD+1

ROR HIPROD

ROR MLIER+1

ROR MLIER

BCC DECCNT ;BRANCH IF NEXT BIT OF MULTIPLIER IS 0
CLC ;NEXT BIT IS 1 SO ADD MULTIPLICAND TO PRODUCT
LDA MCAND

ADC HIPROD

STA HIPROD

LDA MCAND+1

ADC HIPROD+1

STA HIPROD+1 ;CARRY = OVERFLOW FROM ADD

DEX

BNE MULLP ;CONTINUE UNTIL DONE

; PUSH LOW WORD OF PRODUCT ON TO STACK

LDA MLIER+1

PHA

LDA MLIER

PHA

; RESTORE RETURN ADDRESS
LDA RETADR+1

PHA

LDA RETADR

PHA

RTS

.BLOCK 2 sMULTIPLICAND

MLIER:
HIPROD:
RETADR:

~. e wu we

SC0603:

OPRND1
OPRND2
RESULT:

«BLOCK
.BLOCK
«BLOCK

SAMPLE EXECUTION:

NN

6C 16-BIT MULTIPLICATION {(MUL16)

sMULTIPLIER AND LOW WORD OF PRODUCT
HIGH WORD OF PRODUCT
;RETURN ADDRESS

sMULTIPLY OPRNDl1 * OPRND2 AND STORE THE PRODUCT AT RESULT

LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
JSR
PLA
STA
PLA
STA
BRK

JMP
.WORD
.WORD
.BLOCK

.END

OPRND1+1
OPRND1
OPRND2+1
OPRND2
MUL16
RESULT

RESULT+1

SC0603
-2
1023

2

; PROGRAM

;MULTIPLY

-2046 = OF802H
02H
F8H

RESULT OF 1023 * -2
IN MEMORY RESULT
RESULT+1

nuon

.
’
.
¢
.
’

72 BYTE RESULT

239

we m¢ we w we

16-Bit Division

(SDIV16, UDIV16, SREM16, UREM16)

6D

Divides two 16-bit operands obtained
from the stack and places either the quotient
or the remainder at the top of the stack.
‘There are four entry points: SDIV16 returns
a 16-bit signed quotient from dividing two
16-bit signed operands, UDIV16 returns
a 16-bit unsigned quotient from dividing
two 16-bit unsigned operands, SREM16 re-
turns a 16-bit remainder (a signed number)
from dividing two 16-bit signed operands,
and UREMI16 returns a 16-bit unsigned
remainder from dividing two 16-bit unsigned
operands. All 16-bit numbers are stored in
the usual 6502 style with the less significant
byte on top of the more significant byte. The
divisor is stored on top of the dividend. If the
divisor is zero, the Carry flag is set and a zero

result is returned; otherwise, the Carry flag is

cleared.

Procedure: If the operands are signed, the
program determines the sign of the quotient
and takes-the absolute values of any negative
operands. It also must retain the sign of the
dividend, since that determines the sign of
the remainder. The program then performs
the actual unsigned division by the usual
shift-and-subtract algorithm, shifting quo-
tient and dividend and placing a 1 bit in the

Registers Used: All

Execution Time: Approximately 1000 to 1160
cycles, depending largely on the number of trial
subtractions that are successful and thus require
the replacement of the previous dividend by the
remainder.

Program Size: 293 bytes

Data Memory Required: Eleven bytes anywhere
in memory. These are utilized as follows: two
bytes for the divisor (starting at address
DVSOR); four bytes for the extended dividend
(starting at address DVEND) and also for the
quotient and remainder; two bytes for the return
address (starting at address RETADR); one byte
for the sign of the quotient (address SQUOT);
one byte for the sign of the remainder (address
SREM); and one byte for an index to the result
(address RSLTIX).

Special Case: If the divisor is zero, the program
returns with the Carry flag set to 1 and a result of
zero. Both the quotient and the remainder are
Zero.

quotient each time a trial subtraction is suc-
cessful. If the operands are signed, the pro-
gram must negate (that is, subtract from
zero) any result (quotient or remainder) that
is negative. The Carry flag is cleared if the
division is proper and set if the divisor is
found to be zero. A zero divisor also results
in a return with the result (quotient or
remainder) set to zero.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of divisor
More significant byte of divisor

Less significant byte of dividend
More significant byte of dividend

240

Exit Conditions

Order in stack (starting from the top)

Less significant byte of result
More significant byte of result

If the divisor is non-zero, Carry = 0 and the
result is normal. If the divisor is zero, Carry

= 1 and the result is 0000, .

60 16-BIT DIVISION {SDIV16, UDIV16, SREM16, UREM1s) 241

Examples

Dividend = 03E0,¢ = 992,
Divisor = 00B6,, = 182,

1. Data:

Quotient (from UDIV16) = 0005,,

Remainder (from UREM16) = 0052,
= 0082,

Carry = 0 (no divide-by-zero error)

Result:

Note that we have taken the view that the
remainder of a signed division may be either
positive or negative. In our procedure, the
remainder always takes the sign of the divi-
dend. The user can easily examine the quo-
tient and change the form to obtain a
remainder that is always positive. In that
case, the final result of Example 2 would be

Quotient = FFF2,, = —14)
Remainder (always positive) = 0068,

2. Data: Dividend = D73A | = —10,438,,
Divisor = 02F1;, = 753,
Result: Quotient (from SDIV16) = FFF3,
= =13
Remainder (from SREM16) = FD77,,
= —649,

Carry = 0 (no divide-by-zero error)

Regardless of the entry point used, the
program always calculates both the quotient
and the remainder. Upon return, the quo-
tient is available in addresses DVEND and
DVEND+1 (more significant byte in
DVEND +1) and the remainder in addresses
DVEND+2 and DVEND+3 (more signifi-
cant byte in DVEND + 3). Thus, the user can
always obtain the result that is not returned
in the stack.

=104,
; Title 16 bit division
; Name:
i
Purpose: SDIV1é6

16 bit
UDIV16

SREM16

UREM16

WO NE N Ne N N e Mo N Ne Ne e we s We e we e

Entry: TOP OF STACK

SDIV16, UDIV16, SREM16, UREM16

Divide 2 signed 16 bit words and return a
signed quotient.

Divide 2 unsigned 16 bit words and return a
16 bit unsigned quotient.

Divide 2 signed 16 bit words and return a
16 bit signed remainder.

Divide 2 unsigned 16 bit words and return a
16 bit unsigned remainder.

e we we we

TE NS NE W NE Ve e e ne NP e w8 e %P % we we e

242 ARTHMETIC

Exit:

Registers used:
Time:

Size:

e We W WS WE MO M We We W W We We we We WE We Ve We Ve W We Mo e o N Ne

;UNSIGNED DIVISION
UDIV1é6:

LDA #0

BEQ UDIVMD

;UNSIGNED REMAINDER
UREM16:
LDA #2

UDIVMD:
STA RSLTIX

Low byte of return address,
High byte of return addres

Low byte of divisor,

High byte of divisor,
Low byte of dividend,
High byte of dividend

TOP OF STACK
Low byte of result,
High byte of result,

If no errors then
carry := 0

else
divide by zero error
carry := 1
quotient := 0
remainder := 0

All

S,

Approximately 1000 to 1160 cycles

Program 293 bytes
Data 13 bytes

;RESULT 1S QUOTIENT (INDEX=0)

;RESULT IS REMAINDER (INDEX=2)

.
r
.
’

;SAVE RETURN ADDRESS

PLA

STA RETADR
PLA

STA RETADR+1
;GET DIVISOR
PLA

STA DVSOR
PLA

STA DVSOR+1

;GET DIVIDEND
PLA
STA DVEND
PLA

RESULT INDEX (0 FOR QUOTIENT,

2 FOR REMAINDER)

Ne e e me NG s we WMo Mo s WS WE we WO WS We s Wa we NE We Ne N Ve Ne we N

DIVER:
DIVOK:

i
i SIGNED
SDIV1eé6:

;SIGNED
SREM16:

SDIVMD:

6D 16-BIT DIVISION (SDIV16, UDIV16, SREM16, UREM1s) 243

STA DVEND+1
; PERFORM DIVISION

JSR UDIV :

BCC DIVOK ;BRANCH IF NO ERRORS

JMP EREXIT

JMP OKEXIT

DIVISION

LDA 40 ;RESULT IS QUOTIENT (INDEX=0)
BEQ SDIVMD

REMAINDER

LDA $2 ;RESULT IS REMAINDER (INDEX=2)
BNE SDIVMD

STA RSLTIX ;RESULT INDEX (0 FOR QUOTIENT,

; 2 FOR REMAINDER)

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET DIVISOR

PLA

STA DVSOR
. PLA

STA DVSOR+1

;GET DIVIDEND

PLA

STA DVEND

PLA

STA DVEND+1

;DETERMINE SIGN OF QUOTIENT BY PERFORMING AN EXCLUSIVE OR OF THE .
HIGH BYTES. IF THE SIGNS ARE THE SAME THEN BIT 7 WILL BE 0 AND THE
QUOTIENT IS POSITIVE. IF THE SIGNS ARE DIFFERENT THEN THE QUOTIENT
IS NEGATIVE.

~. we we

LDA DVEND+1

ECR DVSOR+1

STA SQUOT

;SIGN OF REMAINDER IS THE SIGN OF THE DIVIDEND
LDA DVEND+1

STA SREM

;TAKE THE ABSOLUTE VALUE OF THE DIVISOR
LDA DVSOR+1
BPL CHKDE BRANCH IF ALREADY POSITIVE

244 riTHMETIC

CHKDE:

DODIV:

DOREM:

EREXIT:

LDA
SEC
SBC
STA
LDA
SBC
STA

$0 ;SUBTRACT DIVISOR FROM ZERO

DVSOR

DVSOR »
#0

DVSOR+1

DVSOR+1

; TAKE THE ABSOLUTE VALUE pF THE DIVIDEND

LDA
BPL
LDA
SEC
SBC
STA
LDA
SBC
STA

;DIVIDE
JSR
BCS

i NEGATE
LDA
BPL
LDA
SEC
SBC
STA
LDA
SBC
STA

;NEGATE
LDA
BPL
LDA
SEC
SBC
STA
LDA
SBC
STA
JMP

DVEND+1 .
DODIV ;BRANCH IF DIVIDEND IS POSITIVE
#0 +SUBTRACT DIVIDEND FROM ZERO

DVEND
DVEND
#0
DVEND+1
DVEND+1

ABSOLUTE VALUES
UD1v
EREXIT ;EXIT IF DIVIDE BY ZERO

QUOTIENT IF IT IS NEGATIVE

sQuUOT

DOREM ;BRANCH IF QUOTIENT IS POSITIVE
#0 ;SUBTRACT QUOTIENT FROM ZERO

DVEND

'DVEND

#0
DVEND+1
DVEND+1

REMAINDER IF IT IS NEGATIVE

SREM

OKEXIT ;BRANCH IF REMAINDER IS POSITIVE
#0

DVEND+2
DVEND+2
#0
DVEND+3
DVEND+3
OKEXIT

;ERROR EXIT (CARRY = 1, RESULTS ARE ZERO)

LDA
STA
STA
STA
STA
SEC

#0

DVEND

DVEND+1 ;QUOTIENT := 0
DVEND+2

DVEND+3 ;REMAINDER := 0

;CARRY = 1 IF ERROR

6D 16-BIT DIVISION (SDIV16, UDIV16, SREM16, UREM16) 248

BCS DVEXIT

;GOOD EXIT (CARRY = 0)
OKEXIT:

CLC sCARRY = 0, NO ERRORS
DVEXIT:

;PUSH RESULT

LDX RSLTIX ;}GET INDEX TO RESULT (0=QUOTIENT, 2=REMAINDER)

LDA DVEND+1,X

PHA

LDA DVEND, X

PHA

;RESTORE RETURN ADDRESS

LDA . RETADR+1

PHA

LDA RETADR

PHA)

RTS

PRRR AR AR AR AR AR AR AR R RN AR R R AR AR AN ANk
iROUTINE: UDIV

; PURPOSE: DIVIDE A 16 BIT DIVIDEND BY A 16 BIT DIVISOR
;ENTRY: DVEND = DIVIDEND

H DVSOR = DIVISOR
;EXIT: DVEND = QUOTIENT
: DVEND+2 = REMAINDER

I
;REGISTERS USED: ALL
AR R AR RN AR AR AR AR AR AR AR R R R ANk

UDIV:
;ZERO UPPER WORD OF DIVIDEND THIS WILL BE CALLED DIVIDEND[1] BELOW
LDA #0
STA DVEND+2
STA DVEND+3
sFIRST CHECK FOR DIVISION BY ZERO
LDA DVSOR
ORA DVSOR+1
BNE OKUDIV ;BRANCH IF DIVISOR IS NOT ZERO
SEC ;ELSE ERROR EXIT
RTS
$PERFORM THE DIVISION BY TRIAL SUBTRACTIONS
OKUDIV:
LDX #16 ;LOOP THROUGH 16 BITS
DIVLP:
ROL DVEND {SHIFT THE CARRY INTO BIT 0 OF DIVIDEND
ROL DVEND+1 iWHICH WILL BE THE QUOTIENT
ROL DVEND+2 7AND SHIFT DIVIDEND AT THE SAME TIME
ROL DVEND+3

;CHECK IF DIVIDEND([1l] IS LESS THAN DIVISOR

246 AsriTHMVETIC

CHKLT:
‘ SEC
LDA DVEND+2
SBC DVSOR
TAY ' ;SAVE LOW BYTE IN REG Y
LDA DVEND+3
SBC DVSOR+1 ;SUBTRACT HIGH BYTES WITH RESULT IN REG A
BCC DECCNT ,BRANCH IF DIVIDEND < DIVISOR AND CARRY
STY DVEND+2 ;ELSE
STA DVEND+3 ; DIVIDEND[1l] := DIVIDEND[l] - DIVISOR
DECCNT:
DEX
BNE DIVLP
ROL DVEND ;SHIFT IN THE LAST CARRY FOR THE QUOTIENT
ROL DVEND+1 B
CLC ;NO ERRORS, CLEAR CARRY
RTS
; DATA

;DIVISOR

'DIVIDEND[O] AND QUOTIENT
'DIVIDEND[l] AND REMAINDER

;RETURN ADDRESS

;SIGN OF QUOTIENT

+SIGN OF REMAINDER

;INDEX TO THE RESULT 0 IS QUOTIENT,
; 2 1S REMAINDER

DVSOR: .BLOCK
DVEND: _.BLOCK

. .BLOCK
RETADR: .BLOCK
SQUOT: .BLOCK
SREM: .BLOCK
RSLTIX: .BLOCK

=N NN

SAMPLE EXECUTION:

— ne we we we
~ wa we we we

; PROGRAM SECTION

§C0604: R
;SIGNED DIVIDE, OPRND1 / OPRND2, STORE THE QUOTIENT AT QUOT
LDA OPRND1+1
PHA
LDA OPRND1
PHA
LDA OPRND2+1
PHA
LDA OPRND2
PHA
JSR SDIV1é ;SIGNED DIVIDE
PLA
STA - QUOT
PLA
STA QUOT+1
BRK sRESULT OF -1023 / 123 = -8

;: IN MEMORY QUOT = F8 HEX
i QUOT+l = FF HEX

6D 16-BIT DIVISION (SDIV16, UDIV16, SREM16, UREM16) 247

;UNSIGNED DIVIDE, OPRND1l / OPRND2, STORE THE QUOTIENT AT QUOT
LDA OPRND1+1

PHA
LDa OPRND1

PHA

LDA OPRND2+1

PHA

Lba OPRND2

PHA

JSR UDIV1é6 .;UNSIGNED DiVIDE

PLA _

STA QuUOT

PLA

STA QUOT+1

BRK RESULT OF 64513 / 123 = 524

; IN MEMORY QUOT = 0C HEX
; QUOT+1 = 02 HEX

;SIGNED REMAINDER, OPRNDl / OPRND2, STORE THE REMAINDER AT REM
LDA OPRND1+1

PHA

LDA OPRND1

PHA

LDA OPRND2+1

PHA

LDA OPRND2

PHA

JSR SREM16 ; REMAINDER

PLA

STA REM

PLA

STA REM+1 :

BRK ;THE REMAINDER OF -1023 / 123 = -39
; IN MEMORY REM = D9 HEX
; REM+1 = FF HEX

;UNSIGNED REMAINDER, OPRNDl / OPRND2, STORE THE REMAINDER AT REM

LDA OPRND1+1

PHA

LDA OPRND1

PHA

" LDA OPRND2+1

PHA

LDA OPRND2

PHA .

JSR UREM16 ; REMAINDER

PLA

STA REM

PLA

STA REM+1

PLA ,

BRK - ;THE REMAINDER OF 64513 / 123 = 61
; IN MEMORY REM 3D HEX
; REM+1 00

non

248 irTHMETIC

;s DATA
OPRND1
OPRND2
QUOT:
REM:

SC0604

-1023
123

2

2

; PROGRAM

;DIVIDEND (64513 UNSIGNED)
;DIVISOR

; QUOTIENT

;sREMAINDER

16-Bit Comparison (CMP16)

6E

Compares two 16-bit operands obtained
from the stack and sets the flags accordingly.
All 16-bit numbers are stored in the usual
6502 style with the less significant byte on top
of the more significant byte. The comparison
is performed by subtracting the top operand
(or subtrahend) from the bottom operand (or
minuend). The Zero flag always indicates
whether the numbers are equal. If the num-
bers are unsigned, the Carry flag indicates
which one is larger (Carry = 0if top operand
or subtrahend is larger and 1 otherwise). If
the numbers are signed, the Negative flag
indicates which one is larger (Negative = 1 if
top operand or subtrahend is larger and 0
otherwise); two’s complement overflow is
considered and the Negative flag is inverted
if it occurs.

Procedure: The program first compares the
less significant bytes of the subtrahend and
the minuend. It then subtracts the more sig-

Registers Used: A, P
Execution Time:' Approximately 90 cycles
Program Size: 65 bytes

Data Memory Required: Six bytes anywhere in
memory for the minuend or WORDI (2 bytes
starting at address MINEND), the subtrahend or
WORD?2 (2 bytes starting at address SUBTRA),
and the return address (2 bytes startmg at address
RETADR).

nificant byte of the subtrahend from the
more significant byte of the minuend, thus
setting the flags. If the less significant bytes
of the operands are not equal, the program
clears the Zero flag by logically ORing the
accumulator with 01, If the subtraction
results in two’s complement overflow, the
program complements the Negative flag by
logically Exclusive ORing the accumulator
with 80, (10000000,); it also clears the Zero
flag by the method described earlier.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of subtrahend (top
operand or WORD?2)

More significant byte of subtrahend
(top operand or WORD?2)

Less significant byte of minuend (bottom
operand or WORD1)

More significant byte of minuend (bottom
operand or WORD]1)

Exit Conditions

Flags set as if subtrahend had been

. subtracted from minuend, with a correction if

two’s complement overflow occurred.

Zero flag = 1 if subtrahend and minuend are
equal, 0 if they are not equal.

Carry flag = 0 if subtrahend is larger than
minuend in the unsigned sense, 1 if it is less
than or equal to the minuend.

Negative flag = 1 if subtrahend is larger than
minuend in the signed sense, 0 if it is less
than or equal to the minuend. This flag is cor-
rected if two’s complement overflow occurs.

249

250 ARTHMETIC

Examples
1. Data: Minuend (bottom operand) = 03El, 3. Data: Minuend (bottom operand) = A45D,
Subtrahend (top operand) = 07E4,, Subtrahend (top operand) = 77El
Result: Carry = 0, indicating subtrahend is Result: Carry = 1, indicating subtrahend is not
larger in unsigned sense. larger in unsigned sense
Zero = 0, indicating operands Zero = 0, indicating operands are
not equal not equal
Negative = 1, indicating subtrahend is Negative = 1, indicating subtrahend is
larger in signed sense larger in signed sense
2. Dawa: Minuend (bottom operand) = C51A4 In Example 3. the bottom operand is a negative
Subtrahend (top operand) = C51A,, two’s complement number, whereas the top operand is
a positive lwo’s complement number.

Resuit: Carry = |, indicating subtrahend is not
. larger in unsigned sense
Zero = 1, indicating operands are equal
Negative = 0, indicating subtrahend is
not larger in signed sense

; Tit.le 16 bit compare H

; Name: CMPl6 H

H H
Purpose: Compare 2 16 bit signed or unsigned words and

return the C,Z,N flags set or cleared.

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of word 2 (subtrahend),
High byte of word 2 (subtrahend),
Low byte of word 1 (minuend),
High byte of word 1 (minuend)

Exit: Flags returned based on word 1 - word 2
IF WORD1 AND WORD2 ARE 2'S COMPLEMENT NUMBERS
THEN

IF WORD1l = WORD2 THEN
z2=1,N=0

i e e W6 we W WS WE We Wa We Ws WP W we o w6
e we N6 & ma s Ws ws e Ne N WE We we We w8

WO NS NI NE ME NE WP e W W N N NI N NE WS we Ne we W

CMP16:

IF WORDl1 > WORD2 THEN
-2=0,N=0

IF WORD1l < WORD2 THEN
2=0,N=1

ELSE

IF WORD1 = WORD2 THEN
z2=1,Cc=1

IF WORD1l > WORD2 THEN
z=0,C=1

IF WORD1 < WORD2 THEN
Z2=0,C=0

Registers used: A,P
Time: Approximately 90 cycles

Size: Program 65 bytes

Data 6 bytes

;SAVE THE RETURN ADDRESS

'6E 16-COMPARISON (cMP16) 251

NE NE N e ME WE WE Ne N Me M6 NE N Ne NE e e ws N we

;MAKE 2 = 0, SINCE LOW BYTES ARE NOT EQUAL

PLA

STA RETADR

PLA

STA RETADR+1

;GET SUBTRAHEND

PLA

STA SUBTRA

PLA

STA SUBTRA+1

;GET MINUEND

PLA

STA MINEND

PLA

STA MINEND+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA .

LDA RETADR

PHA

LDA MINEND

CMP SUBTRA ;COMPARE LOW BYTES
BEQ EQUAL ;BRANCH IF THEY ARE EQUAL
;LOW BYTES ARE NOT EQUAL - COMPARE HIGH BYTES
LDA MINEND+1

SBC SUBTRA+1 ;COMPARE HIGH BYTES
ORA #1

BVS OVFLOW

RTS sEXIT

iMUST HANDLE OVERFLOW FOR SIGNED ARITHMATIC

252 ARITHMETIC

;LOW BYTES ARE EQUAL - COMPARE HIGH BYTES
EQUAL:
_LDA MINEND+1
SBC SUBTRA+1 ;UPPER BYTES
BVS OVFLOW :MUST HANDLE OVERFLOW FOR SIGNED ARITHMETIC
RTS sRETURN WITH FLAGS SET
;OVERFLOW WITH SIGNED ARITHMETIC SO COMPLEMENT THE NEGATIVE FLAG
; DO NOT CHANGE THE CARRY FLAG AND MAKE THE ZERO FLAG EQUAL 0.
; COMPLEMENT NEGATIVE FLAG BY EXCLUSIVE-ORING 80H AND ACCUMULATOR.
OVFLOW:
EOR #80H ;COMPLEMENT NEGATIVE FLAG
ORA $1 ;IF OVERFLOW THEN THE WORDS ARE NOT EQUAL 2= 0
:CARRY UNCHANGED
RTS
;DATA

;TEMPORARY FOR THE MINUEND
; TEMPORARY FOR THE SUBTRAHEND
;TEMPORARY FOR THE RETURN ADDRESS

MINEND: .BLOCK
SUBTRA: .BLOCK
RETADR: .BLOCK

SIS V]

SAMPLE EXECUTION

e ws we we we
~e wo e e e

SC0605:
;COMPARE OPRND1 AND OPRND2
LDA OPRND1+1
PHA
LDA OPRND1
PHA
LDA OPRND2+1
PHA '
LDA OPRND2
PHA
JSR CMP16
BRK ;LOOK AT THE FLAGS
; FOR 123 AND 1023
; c=0,2=0,N-=1
JMP SC0605
OPRND1 ,WORD 123 ;MINUEND -
OPRND2 .WORD 1023 ; SUBTRAHEND

.END : PROGRAM

Multiple-Precision Binary Addition (MPBADD)

6F

Adds two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant bytes first (at the lowest
address). The sum replaces one of the num-
bers (the one with the starting address lower
in the stack). The length of the numbers (in
bytes) is 255 or less.

Procedure: The program clears the Carry
flag initially and adds the operands one byte
at a time, starting with the least significant
bytes. The final Carry flag reflects the addi-
tion of the most significant bytes. The sum
replaces the operand with the starting address
lower in the stack (array 1 in the listing). A
length of 00 causes an immediate exit with no
addition operations.

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles
overhead. For example, adding two 6-byte
operands takes 23 X 6 + 82 or 220 cycles

Program Size: 48 bytes

Data Memory Required: Two bytes anywhere in
RAM plus four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
numbers (starting at addresses AYIPTR and
AY2PTR, respectively). In the listing, AYIPTR
is taken as address 00D0,, and AY2PTR as
address 00D2,,.

Special Case: A length of zero causes an
immediate exit with the sum equal to the bottom
operand (i.e., array 1 is unchanged). The Carry
flag is set to 1. ’

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes
Less significant byte of starting address of

second operand (address containing the '

least significant byte of array 2)

More significant byte of starting address of
second operand (address containing the
least significant byte of array 2)

Less significant byte of starting address of
first operand and result (address contain-
ing the least significant byte of array 1)

More significant byte of starting address of
first operand and resuit (address contain-
ing the least significant byte of array 1)

Exit Conditions

First operand (array 1) replaced by first
operand (array 1) plus second operand (array
2).

253

254 ARTHMETIC

éxample‘

Data:

Result:

~ we we we

.o ms e %o WO NS e We W WE WS We SO W6 WE We NWs We e W e Ne W W6 We We %o W Ne %o

; EQUATES
AY1PTR:
AY2PTR:

MPBADD:

Length of operands (in bytes) = 6
Top operand (array 2) = 19D028A193EA ¢
Bottom operand (array 1) = 293EABF059C7,4
Bottom operand (array 1) = Bottom

operand (array 1) + Top operand

(array 2) = 430ED491EDBI

Carry =0

Title Multiple-Precision Binary Addition
Name: MPBADD

Purpose: Add 2 arrays of binary bytes
Arrayl := Arrayl + Array?

Entry: TOP OF STACK .

Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 address,
High byte of array 2 address,
Low byte of array 1 address,
High byte of array 1 address

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY|0] is the
least significant byte, &and ARRAY [LENGTH-1]
the most significant byte.

Exit: Arrayl := Arrayl + Array2

Registers used: All

Time: 23 cycles per byte plus 82 cycles
overhead.

Size: Program 48 bytes
Data 2 bytes plus

4 bytes in page zero

. EQU 0DOH ;:PAGE ZERO FOR ARRAY 1 POINTER
.EQU 0D2H ; PAGE ZERO FOR ARRAY 2 POINTER

;SAVE RETURN ADDRESS

Ne s e S w4 ws e Mm@ %E NE Ne W& WS Ne W We WA we W& We e Ne e e %6 We Ne e %o e

~e we no we

LOOP:

EXIT:

H
;DATA
RETADR

. e we we we

SC0606:

6F MULTIPLE-PRECISION BINARY ADDITION (MPBADD) 255

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

TAX

;GET STARTING ADDRESS OF ARRAY 2

PLA

STA AYZPTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

LDY #0 ’

CPX #0 1S LENGTH OF ARRAYS = 0 7
BEQ EXIT ;YES, EXIT

CLC :CLEAR CARRY

LDA (AY1PTR) ,Y ;GET NEXT BYTE

ADC (AY2PTR) ,Y ;ADD BYTES

STA (AY1PTR),Y ;STORE SUM

INY ;s INCREMENT ARRAY INDEX
DEX i DECREMENT COUNTER

BNE LOOP ;CONTINUE UNTIL COUNTER = 0
RTS

+BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION:

e e we we we

256 ARTHMETIC

SZAYS:

AY1ADR:
AY2ADR:

AY1:

AY2:

LDA
PHA
LDA
PHA

LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

. WORD
.WORD

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
. BYTE
.BYTE
.BYTE

.END

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR -

#SZAYS

MPBADD

SC0606
7

AY1l
AY2

067H
045H
023H
001d

067H
045H
023H
001n
0
0
0

; PROGRAM

;PUSH AY1l ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS
;sMULTIPLE-PRECISION
;RESULT OF 1234567H

; IN MEMORY

~e we me we we we

;S1ZE OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

AY1

AY1+l
AY1l+2
AY1+3
AY1l+4
AY1+5
AY1+6

BINARY ADDITION

Womouwonnonn+

1234567H
CEH
8AH
46H
02H
00H
00H
00H

2468ACEH

Multiple-Precision Binary Subtraction

(MPBSUB)

6G

Subtracts two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address.
The starting address of the subtrahend (num-
ber to be subtracted) is stored on top of the
starting address of the minuend (number
from which the subtrahend is subtracted).
The difference replaces the minuend in
memory. The length of the numbers (in
bytes) is 255 or less.

Procedure: The program sets the Carry flag
(the inverted borrow) initially and subtracts
the subtrahend from the minuend one byte at
a time, starting with the least significant
bytes. The final Carry flag reflects the
subtraction of the most significant bytes. The
difference replaces the minuend (the
operand with the starting address lower in the
stack, array 1 in the listing). A length of 00

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles
overhead. For example, subtracting two 6-byte
operands takes 23 X 6 + 82 or 220 cycles.

Program Size: 48 bytes

Data Memory Required: Two bytes anywhere in
RAM plus four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
numbers (starting at addresses MINPTR and
SUBPTR, respectively). In the listing, MINPTR
is taken as address 00DO;, and SUBPTR as
address 00D2,.

Special Case: A length of zero causes an
immediate exit with the minuend unchanged
(that is, the difference is equal to the bottom
operand). The Carry flag is set to 1.

causes an immediate exit with no subtraction
operations.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
subtrahend (address containing the least
significant byte of array 2)

More significant byte of starting address of
subtrahend (address containing the least
significant byte of array 2)

Less significant byte of starting address of
minuend (address containing the least sig-
nificant byte of array 1)

More significant byte of starting address of
minuend (address containing the least sig-
nificant byte of array 1)

Exit Conditions

Minuend replaced by minuend minus
subtrahend.

257

258 ARTHMETIC

Example

Data: Length of operands (in bytes) .= 4
Minuend = 2FSBA7C34
Subtrahend = 14DF35B8¢

Result: Difference = 1A7C720By.
This number replaces the original
minuend in memory. The
Carry flag is set to 1 in accordance
with its usual role (in 6502 program-
ming) as an inverted borrow.

; Title Multiple-Precision Binary Subtraction
; - Name: MPBSUB
Purpose: Subtract 2 arrays of binary bytes
Minuend := Minuend - Subtrahend
Entry: TOP OF STACK

Low byte of return address,

High byte of return address,
Length of the arrays in bytes,
Low byte of subtrahend address,
High byte of subtrahend address,
Low byte of minuend address,
High byte of minuend address

The arrays are unsigned binary fiumbers with a
maximum length of 255 bytes, ARRAY [0] is the
least significant byte, and ARRAY [LENGTH-1])
the most significant byte.

Exit: Minuend := Minuend - Subtrahend

Registers used: All

Time: 23 cycles per byte plus 82 cycles
overhead.
Size: Program 48 bytes
' Data 2 bytes plus

4 bytes in page zero

Ne we w6 we N wE Mo NS WA We we We We We WE e e We S e We %6 %6 =e o we me we wo we

; EQUATES
MINPTR: .EQU 0DOB ;PAGE ZERO FOR MINUEND POINTER
SUBPTR: .EQU OD2H ;PAGE ZERO FOR SUBTRAHEND POINTER

e we we we

~e we N N6 N8 Sa N6 e WE N8 WE WE Ne N W We We Ne W Ne W6 N6 N9 %o s w8 ws we ws we

6G MULTIPLE-PRECISION BINARY SUBTRACTION (MPBSUB) 259

MPBSUB:

;SAVE RETURN ADDRESS
PLA
STA RETADR
PLA
STA RETADR+1
;GET LENGTH OF ARRAYS
PLA
TAX
:GET STARTING ADDRESS OF SUBTRAHEND
PLA
STA SUBPTR
PLA
STA SUBPTR+1
iGET STARTING ADDRESS OF MINUEND
PLA
STA MINPTR
PLA
STA MINPTR+1
;RESTORE RETURN ADDRESS
LDa RETADR+1
PHA
LDA RETADR
PHA
sINITIALIZE
LDY #0
CPX #0 ;IS LENGTH OF ARRAYS = 0 ?
BEQ EXIT : s YES, EXIT
SEC ;SET CARRY
LOOP: '
LDA (MINPTR),Y ;GET NEXT BYTE
SBC (SUBPTR) ,Y +SUBTRACT BYTES
STA (MINPTR),Y sSTORE DIFFERENCE
INY s INCREMENT ARRAY INDEX
DEX s DECREMENT COUNTER
BNE LOOP ;CONTINUE UNTIL COUNTER = 0
EXIT:
RTS
H
; DATA
RETADR .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION:

we we we e we
wo we wa we we

260 ARTHMVETIC

SC0607:
LDA AY1ADR+1
PHA
LDA AY1ADR
PHA ;:PUSH AY1l ADDRESS
LDA AY2ADR+1
PHA
LDA AY2ADR '
PHA ;PUSH AY2 ADDRESS
LDA 4SZAYS
PHA ;PUSH SIZE OF ARRAYS
JSR MPBSUB sMULTIPLE-PRECISION BINARY SUBTRACTION
BRK ;RESULT OF 7654321H - 1234567H = 641FDBAH
; IN MEMORY AY1l ~ = OBAH
: AY1+1 = OFDH
; AY1+2 = 41H
: AY1+43 = 06H
: AY1+4 = 00H
: AY1+45 = 00H
: AY1+6 = 00H
JMP $C0607
SZAYS: .EQU 7 +SIZE OF ARRAYS
AY1ADR: .WORD AY1l ;ADDRESS OF ARRAY 1 (MINUEND)
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2 (SUBTRAHEND)
AY1l:
.BYTE 021H
.BYTE 043H
.BYTE 065H
.BYTE 007H
.BYTE 0 '
.BYTE. ©
.BYTE 0
AY2:

.BYTE 067H
.BYTE 045H
.BYTE 023H
.BYTE 001H

.BYTE 0
.BYTE 0
.BYTE 0

.END ; PROGRAM

Multiple-Precision Binary MUIti'pIication

(MPBMUL)

6H

Multiplies two multi-byte unsigned bi-
nary numbers. Both numbers are stored with
their least significant byte at the lowest
address. The product replaces one of the
numbers (the one with the starting address
lower in the stack). The length of the num-
bers (in bytes) is 255 or less. Only the least
significant bytes of the product are returned
to retain compatibility with other multiple-
precision binary operations.

Procedure: The program uses an ordinary
add-and-shift algorithm, adding the multipli-
cand (array 2) to the partial product each

time it finds a 1 bit in the multiplier (array 1).
The partial product and -the multiplier are
shifted through the bit length plus 1 with the
extra loop being necessary to move the final
carry into the product. The program main-
tains a full double-length unsigned partial
product in memory locations starting at
HIPROD (more significant bytes) and in
array 1 (less significant bytes). The less sig-
nificant bytes of the product replace the
multiplier as the multiplier is shifted and
examined for 1 bits. A length of 00 causes an
exit with no multiplication.

Registers Used: All

Execution Time: Depends on the length of the
operands and on the number of 1 bits in the
multiplier (requiring actual additions). If the
average number of 1 bits in the multiplier is four
per byte, the execution time is approximately

316 x LENGTH? + 223 x LENGTH + 150

cycles where LENGTH is the number of bytes in
the operands. If, for example, LENGTH = 4, the
approximate execution time is

316 X 42+ 223 X 4 + 150 = 316 % 16 + 892
+ 150 = 5056 + 1042 = 6,098 cycles.

Program Size: 145 bytes

Data Memory Required: 260 bytes anywhere in
RAM plus four bytes on page 0. The 260 bytes

"on page 0 hold pointers to the two operands (the

anywhere in RAM are temporary storage for the
more significant bytes of the product (255 bytes
starting at address HIPROD), the return address
(two bytes starting at address RETADR), the
loop counter (two bytes starting at address
COUNT), and the length of the operands in bytes
(one byte at address LENGTH). The four bytes

pointers start at addresses AY1PTR and
AY2PTR, respectively). In the listing, AYIPTR
is taken as address 00DO0,; and AY2PTR as
address 00D2 .

Special Case: A length of zero causes an
immediate exit with the product equal to the orig-
inal multiplier (that is, array 1 is unchanged) and
the more significant bytes of the product (starting
at address HIPROD) undefined.

261

262 ARTHMETIC

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
multiplicand (address containing the least
significant byte of array 2)

More significant byte of starting address of
multiplicand (address containing the least
significant byte of array 2)

Less significant byte of starting address of
multiplier (address containing the least sig-
nificant byte of array 1)

More significant byte of starting address of
multiplier (address containing the least sig-
nificant byte of array 1)

Exit Conditions

Multiplier (array 1) replaced by multiplier
(array 1) times multiplicand (array 2).

Example

Data: Length of operands (in bytes) = 04

Top operand (array 2 or multiplicand)
— 000SD1F7,¢ = 381,431,

Bottom operand (array 1 or. multiplier)
= 00000AB1,¢ = 2,737

Bottom operand (array 1) = Bottom
operand (array 1)» Top operand
(array 2) = 3E39DIC7

= 1,043,976,647,

Result:

Note that MPBMUL returns only the less
significant bytes (that is, the number of bytes
in the multiplicand and multiplier) of the
product to maintain compatibility with other
multiple-precision binary arithmetic opera-
tions. The more significant bytes of the pro-
duct are available starting with their least sig-
nificant byte at address HIPROD. The user
may need to check those bytes for a possible
overflow or extend the operands with addi-
tional zeros. '

6H MULTIPLE-PRECISION BINARY MULTIPLICATION (vPBMUL) 263

Title Multiple-Precision Binary Multiplication

H i

; Name: MPBMUL H

H i

i H
Purpose: Multiply 2 arrays of binary bytes

Arrayl := Arrayl * Array2

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 (multiplicand) address,
High byte of array 2 (multiplicand) address,
Low byte of array 1 (multiplier) address,
High byte of array 1 (multiplier) address

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Exit: Arrayl := Arrayl * Array2?
Registers used: All
Time: " Assuming the average number of 1 bits in array 1
is 4 * length then the time is approximately
(316 * length”2) + (223 * length) + 150 cycles
Size: Program 145 bytes

Data 260 bytes plus
4 bytes in page zero

WO NS NE ME NS N NS N NE N M RE e e e e WO NE We e NE Ws NE We e we e we we we wo
WO N NS NE N8 ™ N NE NG NE N e WE NE Ne NS e NS Ne NS WE NS e NE e W we W me W we

; EQUATES
AYIPTR: .EQU ODOH ;PAGE ZERO FOR ARRAY 1 POINTER
AY2PTR: .EQU 0D2H ;PAGE ZERO FOR ARRAY 2 POINTER
MPBMUL:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1 ;SAVE RETURN ADDRESS

;GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET ADDRESS OF ARRAY 2 AND SUBTRACT 1 SO THAT THE ARRAYS MAY
; BE INDEXED FROM 1 TO LENGTH RATHER THAN 0 TO LENGTH-1

PLA

SEC

264 ARTHMETIC

SBC #1 ;SUBTRACT 1 FROM LOW BYTE
STA AY2PTR
PLA
SBC #0 ;SUBTRACT BORROW IF ANY
STA AY2PTR+1
;GET ADDRESS OF ARRAY 1 AND SUBTRACT 1
PLA
SEC
SBC #1 ;SUBTRACT 1 FROM LOW BYTE
STA AY1PTR
PLA
SBC $0 :SUBTRACT BORROW IF ANY
STA AY1PTR+1
sRESTORE RETURN ADDRESS
LDA RETADR+1
PHA
LDA RETADR
PHA
;EXIT IF LENGTH IS ZERO
LDA LENGTH :1S LENGTH OF ARRAYS = 0 ?
BEQ EXIT s YES, EXIT
;SET COUNT TO NUMBER OF BITS IN ARRAY PLUS 1
; COUNT := (LENGTH * 8) + 1
STA COUNT ;INITIALIZE COUNTER TO LENGTH
LDA #0 ,
ASL COUNT ;COUNT * 2
ROL A ’ ;A WILL BE UPPER BYTE
ASL COUNT sCOUNT * 4
ROL A
ASL COUNT ;COUNT * 8
ROL A
STA COUNT+1 ;STORE UPPER BYTE OF COUNT
INC COUNT ; INCREMENT LOW BYTE OF COUNT
BNE %ZEROPD)
INC COUNT+1 ; INCREMENT HIGH BYTE IF LOW BYTE BECOMES, 0
;ZERO HIGH PRODUCT ARRAY
ZEROPD: ,
LDX LENGTH
LDA #0
ZEROLP: .
STA HIPROD-1,X ;THE MINUS 1 FOR INDEXING FROM 1 TO LENGTH
DEX
BNE ZEROLP
;MULTIPLY USING THE SHIFT AND ADD ALGORITHM
; ARRAY 1 WILL BE THE MULTIPLIER AND ARRAY 2 THE MULTIPLICAND
CLC ;CLEAR CARRY FIRST TIME THROUGH
LOOP:

;SHIFT CARRY INTO THE UPPER PRODUCT ARRAY AND THE LEAST SIGNIFICANT
; BIT OF THE UPPER PRODUCT ARRAY TO CARRY
LDX LENGTH

SRPLP:

SRA1LP:

ADDLP:

DECCNT:

EXIT:

H

;DATA
RETADR:
COUNT:
LENGTH:
HIPROD:

-

6H MULTIPLE-PRECISION BINARY MULTIPLICATION (vPeMUL) 265

ROR HIPROD-1,X ;MINUS 1 FOR INDEXING FROM 1 TO LENGTH
DEX
BNE SRPLP ;CONTINUE UNTIL INDEX = 0

;SHIFT CARRY WHICH IS THE NEXT BIT OF LOWER PRODUCT INTO THE MOST
; SIGNIFICANT BIT OF ARRAY 1. THIS IS THE NEXT BIT OF THE PRODUCT.
; THIS ALSO SHIFTS THE NEXT BIT OF MULTIPLIER TO CARRY.

LDY LENGTH

LDA (AY1PTR) ,Y :

ROR A ;ROTATE NEXT BYTE

STA (AY1PTR),Y

DEY

BNE SRA1LP ;CONTINUE UNTIL INDEX = 0

;IF NEXT BIT OF THE MULTIPLIER IS 1 THEN
; ADD ARRAY 2 AND UPPER ARRAY OF PRODUCT

BCC DECCNT ;BRANCH IF NEXT BIT IS ZERO
;ADD ARRAY 2 AND HIPROD

LDY #1

LDX LENGTH

CLC

LDA (AY2PTR) , Y

ADC HIPROD-1,Y ;ADD BYTES

STA HIPROD-1,Y

INY ; INCREMENT INDEX

DEX ;DECREMENT COUNTER

BNE ADDLP ;CONTINUE UNTIL COUNT = 0

;DECREMENT BIT COUNTER AND EXIT IF DONE
;DOES NOT CHANGE CARRY !

DEC COUNT ;DECREMENT LOW BYTE OF COUNT
BNE LOOP ;BRANCH IF IT IS NOT ZERO

LDX COUNT+1 ;GET HIGH BYTE

BEQ EXIT ;sEXIT IF COUNT IS ZERO

DEX ;ELSE DECREMENT HIGH BYTE OF COUNT
STX COUNT+1

JMP LOOP

RTS

.BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
.BLOCK 2 ; TEMPORARY FOR LOOP COUNTER
.BLOCK 1 ;LENGTH OF ARRAYS

.BLOCK 255 ;HIGH PRODUCT BUFFER

~e we

266 ARTHMETIC

SAMPLE EXECUTION:

~o e we

SC0608:
LDA AY1ADR+1
PHA
LDA AY1ADR
PHA
LDA AY2ADR+1
PHA
LDA AY2ADR
PHA
LDA §SZAYS
PHA
JSR MPBMUL
BRK
JMP SC0608
SZAYS: .EQU 7

AY1ADR: .WORD ~AYl
AY2ADR: .WORD AY2

AY1l:
.BYTE 045H
.BYTE 023H
.BYTE 001H
.BYTE 0
.BYTE 0
.BYTE 0
.BYTE 0

AY2:

.BYTE 034H
.BYTE 012H

.BYTE 0
.BYTE 0
.BYTE 0
.BYTE 0
.BYTE 0

. END ; PROGRAM

;PUSH AY1l ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS
;MULTIPLE-PRECISION BINARY MULTIPLY
;RESULT OF 12345H * 1234H = 14B60404H

; IN MEMORY AY1l = 04H
: AY1l+]l = 04H
H AY1+2 = B6H
: AY1+43 = 14H
; AY1l+4 = 00H
; AY1+5 = QO0H
; AY1+6 = 00H

sSIZE OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

~. we e

Multiple-Precision Bihary Division (MPBDIV) 6l

Divides two multi-byte unsigned binary
numbers. Both numbers are stored with their
least significant byte at the lowest address.
The quotient replaces the dividend (the
operand with the starting address lower in the
stack). The length of the numbers (in bytes)
is 255 or less. The remainder is not returned,
but its starting address (least significant byte)
is available in memory locations HDEPTR
and HDEPTR + 1. The Carry flag is cleared if
no errors occur; if a divide by zero is
attempted, the Carry flag is set to 1, the divi-
dend is left unchanged, and the remainder is
set to zero.

Procedure: The program performs division
by the usual shift-and-subtract algorithm,
shifting quotient and dividend and placinga 1
bit in the quotient each time a trial subtrac-
tion is successful. An extra buffer is used to
hold the result of the trial subtraction and
that buffer is simply switched with the buffer
holding the dividend if the trial subtraction is
successful. The program exits immediately,
setting the Carry flag, if it finds the divisor to
be zero. The Carry flag is cleared otherwise.

Registers Used: All

Execution Time: Depends on the length of the
operands and on the number of 1 bits in the quo-
tient (requiring a buffer switch). If the average
number of 1 bits in the quotient is four per byte,
the execution time is approximately

480 X LENGTH? + 438 x LENGTH + 208

cycles where LENGTH is the number of bytes in
the operands. If, for example, LENGTH = 4 (32-
bit division), the approximate execution time is

480 X 42 + 438 x 4 + 208 =
480 X 16 + 1752 + 208 =
7680 + 1960 = 9,640 cycles

Program Size: 206 bytes

Data Memory Required: 519 bytes anywhere in
RAM plus eight bytes on page 0. The 519 bytes
anywhere in RAM are temporary storage for the
high dividend (255 bytes starting at address
HIDEL), the result of the trial subtraction (255
bytes starting at address HIDE2), the return
address (two bytes starting at address

RETADR), the loop counter (two bytes starting
at address COUNT), the length of the operands
(one byte at address LENGTH), and the
addresses of the high dividend buffers (two bytes
starting at address AHIDE!] and two bytes start-
ing at address AHIDE2). The eight bytes on page
0 hold pointers to the two operands and to the
two ‘temporary buffers for the high dividend. The
pointers start at addresses AY1PTR (00D0, in
the listing), AY2PTR (00D24 in the listing),
HDEPTR (00D4, in the listing), and ODEPTR
(00D6,¢ in the listing). HDEPTR contains the
address of the least significant byte of the
remainder at the conclusion of the program.

Special Cases:

1. A length of zero causes an immediate exit
with the Carry flag cleared, the quotient equal to
the original dividend, and the remainder
undefined.

2. A divisor of zero causes an exit with the
Carry flag set to 1, the quotient equal to the origi-
nal dividend, and the remainder equal to zero.

267

268 ArTHMETIC

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
divisor (address containing the least
significant byte of array 2)

More significant byte of starting address of
divisor (address containing the least
significant byte of array 2)

Less significant byte of starting address of
dividend (address containing the least
significant byte of array 1)

More significant byte of starting address of
dividend (address containing the least
significant byte of array 1)

Exit Conditions

Dividend (array 1) replaced by dividend
(array 1) divided by divisor (array 2).

If the divisor is non-zero, Carry = 0 and the
result is normal.

If the divisor is zero, Carry = 1, the dividend
is unchanged and the remainder is zero.

- The remainder is available with its least

significant byte stored at the address in
HDEPTR and HDEPTR +1

Example

Data: Length of operands (in bytes) = 03

Top operand (array 2 or divisor) = 000F45,, = 3,909,
Bottom operand (array 1 or dividend) = 35A2F7¢ = 3,515,127

Result:’ Bottom operand (array 1) = Bottom

operand (array 1) / Top operand (array 2)

= 00038316 = 899[0
Remainder (starting at address in

HDEPTR and HDEPTR +1) = 0003A8¢

= 936|0
Carry flag is 0 to indicate no
divide by zero error

e we wo we

T NS e NE e N0 N0 Se Ne N NE N6 %e N WE N N e e W6 Ne Me N6 e Ne we We We %o we we we we e e we w4 we

s EQUATES
AY1PTR:
AY2PTR:
HDEPTR:
ODEPTR:
MPBDIV:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

. EQU
.EQU
- EQU
.EQU

0DOH
O0D2H
0D4H
0D6H

Multiple-Precision Binary Division

MPBDIV

Divide 2 arrays of binary bytes
Arrayl := Arrayl / Array2

TOP OF STACK
Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 (divisor) address,
High byte of array 2 (divisor) address,
Low byte of array 1 (dividend) address,
High byte of array 1 (dividend) address

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[0] is the

least

the most significant byte.

Arrayl := Arrayl / Array2
If no errors then

carry
ELSE

divide by 0 error

carry

quotient := array 1 unchanged
remainder := 0

All

Assuming there are length/2 1 bits in the
quotient then the time is approximately

(480 *

Program
Data

6/ MULTIPLE-PRECISION BINARY DIVISION (MPBODIV) 269

~e we e we

significant byte, and ARRAY [LENGTH-1]

=0

1= 1

length®2) + (438 * length) + 208 cycles

206 bytes
519 bytes plus
8 bytes in page zero

TS WE NE N6 %o N We N Ne e Ne e Ne e Ne e Ne we Ne ne Ne NG e Ne Se %e we we w6 e we we we me e . e

' ;PAGE ZERO FOR ARRAY 1 PQINTER

SAVE RETURN ADDRESS

’
PLA
STA
PLA
STA

RETADR
RETADR+1

:PAGE ZERO FOR ARRAY 2 POINTER
:PAGE ZERO FOR HIGH DIVIDEND POINTER
i PAGE ZERO FOR OTHER HIGH DIVIDEND POINTER

270 ARITHMETIC

;GET LENGTH OF ARRAYS

PLA
STA LENGTH
;GET STARTING ADDRESS OF DIVISOR
PLA
STA AY2PTR
PLA
STA AY2PTR+1
;GET STARTING ADDRESS OF DIVIDEND
PLA
STA AY1PTR
PLA
STA AY1PTR+1
;RESTORE RETURN ADDRESS
LDA RETADR+1
PHA.
LDA RETADR
PHA
;INITIALIZE
LDA LENGTH ;IS LENGTH OF ARRAYS = 0 ?
BNE INIT .
JMP OKEXIT ;:YES, EXIT
;SET COUNT TO NUMBER OF BITS IN THE ARRAYS
; COUNT := (LENGTH * 8) + 1
INIT:
STA COUNT ;INITIALIZE COUNTER TO LENGTH
LDA #0
ASL COUNT ;COUNT * 2
ROL A ;A WILL BE UPPER BYTE
ASL COUNT ;COUNT * 4
ROL A
ASL COUNT ;COUNT * 8
ROL A
STA COUNT+1 ;STORE UPPER BYTE OF COUNT
INC COUNT ; INCREMENT COUNT
BNE ZEROPD :
INC COUNT+1
;ZERO BOTH HIGH DIVIDEND ARRAYS
ZEROPD:
LDX LENGTH
LDA ~ #0
ZEROLP:
STA HIDEl-1,X ;THE MINUS 1 FOR INDEXING FROM 1 TO LENGTH
STA HIDE2-1,X
DEX
BNE ZEROLP

;SET HIGE DIVIDEND POINTER TO HIDEl
LDA AHIDE1l

CHKOLP:

DIV:

LOOP:

SLLP1:

DECCNT:

SLUPR:

SLLP2:

6! MULTIPLE-PRECISION BINARY DIVISION (MPeDIV) 27 1

STA HDEPTR

LDA AHIDE1l+l

STA HDEPTR+1

;SET OTHER HIGH DIVIDEND POINTER TO HIDE2

LDA AHIDE2

STa ODEPTR

LDA AHIDE2+1

STA ODEPTR+1

;CHECK IF DIVISOR IS ZERD ' .
LDX LENGTH ;LOGICALLY OR ALL BYTES OF DIVISOR
LDY #0

TYA

ORA (AY2PTR) , Y

INY ; INCREMENT INDEX

DEX .

BNE CHKOLP ;CONTINUE UNTIL REGISTER X = 0
CMP #0

BNE DIV ;BRANCH IF DIVISOR IS NOT ZERO
JIMP EREXIT ; ELSE EXIT INDICATING ERROR

+DIVIDE USING THE TRIAL SUBTRACTION ALGORITHM
CLC FCLEAR CARRY FOR THE FIRST TIME THROUGH
;SHIFT CARRY INTO LOWER DIVIDEND ARRAY AS THE NEXT BIT OF QUOTIENT

i AND THE MOST SIGNIFICANT BIT OF THE LOWER DIVIDEND TO CARRY.
LDX LENGTH

LDY #0
LDA (AY1PTR),Y o

ROL A ;ROTATE NEXT BYTE

STA (A¥1PTR) , Y

INY ;INCREMENT THE INDEX

DEX ,

BNE SLLP1 ;CONTINUE UNTIL REGISTER X = 0

DECREMENT BIT COUNTER AND EXIT IF DONE
;CARRY IS NOT CHANGED 1!

DEC COUNT iDECREMENT LOW BYTE OF COUNT

BNE SLUPR #BRANCH IF IT IS NOT ZERO

LDX COUNT+1 sGET HIGH BYTE)

BEQ OKEXIT EXIT IF COUNT IS ZERO

DEX ;ELSE DECREMENT HIGH BYTE OF COUNT
STX COUNT+1 t

7SHIFT THE CARRY INTO THE LEAST SIGNIFICANT BIT OF THE UPPER DIVIDEND

LDX LENGTH
LDY #0

LDA {HDEPTR)', ¥
ROL A

272 ARTHMETIC

STA (HDEPTR) , Y

INY ; INCREMENT INDEX

DEX

BNE SLLP2 ;CONTINUE UNTIL REGISTER X = 0

;SUBTRACT ARRAY 2 FROM HIGH DIVIDEND PLACING THE DIFFERENCE INTO
; OTHER HIGH DIVIDEND ARRAY

LDY $0
LDX LENGTH
SEC
SUBLP:
LDA (HDEPTR) ,Y '
SBC (AY2PTR) ,Y ;SUBTRACT THE BYTES
STA (ODEPTR) ,Y ;STORE THE DIFFERENCE
INY ; INCREMENT INDEX
DEX
BNE SUBLP ;CONTINUE UNTIL REGISTER X = 0
;IF NO CARRY IS GENERATED FROM THE SUBTRACTION THEN THE HIGH DIVIDEND
; IS LESS THAN ARRAY 2 SO THE NEXT BIT OF THE QUOTIENT IS 0.
; IF THE CARRY IS SET THEN THE NEXT BIT OF THE QUOTIENT IS 1
; AND WE REPLACE DIVIDEND WITH REMAINDER BY SWITCHING POINTERS.
BCC LOOP :sWAS TRIAL SUBTRACTION SUCCESSFUL ?
LDY HDEPTR ;YES, EXCHANGE POINTERS THUS REPLACING
LDX HDEPTR+1 H DIVIDEND WITH REMAINDER
LDA ODEPTR
STA HDEPTR
LDA ODEPTR+1
STA HDEPTR+1
STY ODEPTR
STX ODEPTR+1
;CONTINUE WITH NEXT BIT A 1 (CARRY = 1)
JMP LOOP '
;CLEAR CARRY TO INDICATE NO ERRORS
OKEXIT:
CLC
BCC EXIT
;SET CARRY TO INDICATE A DIVIDE BY ZERO ERROR
EREXIT:
SEC
EXIT:
;ARRAY 1 IS THE QUOTIENT
;HDEPTR CONTAINS THE ADDRESS OF THE REMAINDER
RTS
h
; DATA

;s TEMPORARY FOR RETURN ADDRESS
; TEMPORARY FOR LOOP COUNTER
; LENGTH OF ARRAYS

RETADR: .BLOCK
COUNT: .BLOCK
LENGTH: .BLOCK

NN

61 MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 273

AHIDEl: .WORD HIDE1 ;ADDRESS OF HIGH DIVIDEND BUFFER 1
AHIDE2: ,WORD HIDE2 ;ADDRESS OF HIGH DIVIDEND BUFFER 2
HIDEl: ,BLOCK 255 ;HIGH DIVIDEND BUFFER 1
HIDE2: .BLOCK - 255 ;HIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

e me we me w0
~e %o e we we

SC0609:
LDA AY1ADR+1
PHA
LDA AY1ADR
PHA ;PUSH AY1 ADDRESS
LDA AY2ADR+1
PHA
LDA AYZ2ADR
PHA ;PUSH AY2 ADDRESS
LDA #SZAYS
PHA ;PUSH SIZE OF ARRAYS
JSR MPBDIV sMULTIPLE-PRECISION BINARY DIVIDE
BRK sRESULT OF 14B60404H / 1234H = 12345H
; IN MEMORY AY1 = 454
; AY1+1 = 23H
; AY1+2 = 01H
; AY1+3 = 00H
; AY1+4 = 00H
H AY1+5 = 00H
; AY1+6 = 00H
JMP - SC0609
SZAYS: . EQU 7 ;SIZE OF ARRAYS
AY1ADR: .WORD AYl ;ADDRESS OF ARRAY 1 (DIVIDEND)
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2 (DIVISOR)
AY1l:
.BYTE 004H
.BYTE 004H
.BYTE OB6H
.BYTE 014H
.BYTE 0
.BYTE 0
.BYTE 0
AY2:

.BYTE 034H
.BYTE 012H
.BYTE 0
.BYTE 0

274 ARTHMETIC

.BYTE 0
.BYTE 0
.BYTE 0

.END ; PROGRAM

